HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

We report the first results from a spectroscopic survey of the [C II] 158 μm line from a sample of intermediate redshift (0.2 1011.5 L ☉), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158 μm line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) × 10–3 of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L [C II]/L IR ratio in our intermediate redshift (U)LIRGs is on average ~10 times larger than that of local ULIRGs. Furthermore, we find that the L [C II]/L IR and L [C II]/L CO(1-0) ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ~ 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

[1]  D. Rigopoulou,et al.  A Large Mid-Infrared Spectroscopic and Near-Infrared Imaging Survey of Ultraluminous Infrared Galaxies: Their Nature and Evolution , 1999, astro-ph/9908300.

[2]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[3]  K. Coppin,et al.  Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3 , 2010, 1005.1071.

[4]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[5]  B. Brandl,et al.  High-Resolution Mid-Infrared Spectroscopy of Ultraluminous Infrared Galaxies , 2007, 0706.0513.

[6]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[7]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[8]  D. Eisenstein,et al.  MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES , 2010, 1010.0675.

[9]  T. Girard,et al.  THE THREE-DIMENSIONAL VELOCITY STRUCTURE OF THE THICK DISK FROM SPM4 AND RAVE DR2 , 2010, 1011.6253.

[10]  C. Lonsdale,et al.  The Nature of Star Formation in Distant Ultraluminous Infrared Galaxies Selected in a Remarkably Narrow Redshift Range , 2008, 0801.1842.

[11]  Asantha Cooray,et al.  GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2 , 2011, 1110.4057.

[12]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[13]  C. Heiles On the Origin of the Diffuse C + 158 Micron Line Emission , 1994 .

[14]  S. Maddox,et al.  Far-infrared spectroscopy of a lensed starburst: a blind redshift from Herschel , 2013, 1308.4403.

[15]  Bonn,et al.  A clumpy-cloud photon-dominated regions model of the global far-infrared line emission of the Milky Way , 2008, 0807.1988.

[16]  NOAO,et al.  Spitzer Mid- to Far-Infrared Flux Densities of Distant Galaxies , 2007, 0706.2164.

[17]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[18]  E. Pellegrini,et al.  Herschel-SPIRE Fourier transform spectroscopy of the nearby spiral galaxy IC 342 , 2013, 1306.5485.

[19]  B. Altieri,et al.  The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3 , 2013, Nature.

[20]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[21]  P. Cox,et al.  Infrared Space Observatory Measurements of a [C II] 158 Micron Line Deficitin Ultraluminous Infrared Galaxies , 1998 .

[22]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[23]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[24]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[25]  M. Wolfire,et al.  The [C II] 158 Micron Line Deficit in Ultraluminous Infrared Galaxies Revisited , 2003, astro-ph/0305520.

[26]  A. Cimatti,et al.  The first Herschel view of the mass-SFR link in high-z galaxies , 2010, 1005.1089.

[27]  A. Tielens,et al.  Physical Conditions in Photodissociation Regions - Application to Galactic Nuclei , 1990 .

[28]  M. Rieke,et al.  Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope , 2005, astro-ph/0502216.

[29]  J. Bernard-Salas,et al.  FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES , 2013, 1308.4165.

[30]  Guilaine Lagache,et al.  DUSTY INFRARED GALAXIES: Sources of the Cosmic Infrared Background , 2005, astro-ph/0507298.

[31]  Tao An,et al.  The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys , 2013 .

[32]  S. Maddox,et al.  Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS★ , 2011, Monthly Notices of the Royal Astronomical Society.

[33]  Charles H. Townes,et al.  Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds , 1985 .

[34]  M. Rowan-Robinson,et al.  The Herschel Multi-tiered Extragalactic Survey: HerMES , 2012, 1203.2562.

[35]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[36]  C. Tucker,et al.  DETECTION OF THE 158 μm [C ii] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST , 2010, 1003.2174.

[37]  Understanding the dynamical structure of pulsating stars: The center-of-mass velocity and the Baade-Wesselink projection factor of the β Cephei star α Lupi , 2013, 1305.7366.

[38]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[39]  M. Franx,et al.  WELL-SAMPLED FAR-INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 2 GALAXIES: EVIDENCE FOR SCALED UP COOL GALAXIES , 2010, 1003.3479.

[40]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.