Tree decompositions of graphs: Saving memory in dynamic programming

We propose a simple and effective heuristic to save memory in dynamic programming on tree decompositions when solving graph optimization problems. The introduced ''anchor technique'' is based on a tree-like set covering problem. We substantiate our findings by experimental results. Our strategy has negligible computational overhead concerning running time but achieves memory savings for nice tree decompositions and path decompositions between 60% and 98%.

[1]  Bengt Aspvall,et al.  Memory Requirements for Table Computations in Partial \sl k -Tree Algorithms , 2000, Algorithmica.

[2]  Arie M. C. A. Koster,et al.  Solving partial constraint satisfaction problems with tree decomposition , 2002, Networks.

[3]  Thomas Wolle A Framework for Network Reliability Problems on Graphs of Bounded Treewidth , 2002, ISAAC.

[4]  Ibrahim Matta,et al.  BRITE: an approach to universal topology generation , 2001, MASCOTS 2001, Proceedings Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.

[5]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[6]  Rolf Niedermeier,et al.  Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs , 2005, Discret. Appl. Math..

[7]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[8]  Russell L. Malmberg,et al.  Tree decomposition based fast search of RNA structures including pseudoknots in genomes , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[9]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[10]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[11]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[12]  Bonnie Berger,et al.  A tree-decomposition approach to protein structure prediction , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[13]  Dorothea Wagner,et al.  Solving Geometric Covering Problems by Data Reduction , 2004, ESA.

[14]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[15]  Rolf Niedermeier,et al.  Improved Algorithms and Complexity Results for Power Domination in Graphs , 2005, FCT.

[16]  Hans L. Bodlaender,et al.  Discovering Treewidth , 2005, SOFSEM.

[17]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[18]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[19]  Arie M. C. A. Koster,et al.  Solving Frequency Assignment Problems via Tree-Decomposition1 , 1999, Electron. Notes Discret. Math..

[20]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[21]  Arthur F. Veinott,et al.  Optimal Capacity Scheduling---II , 1962 .

[22]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[23]  Corinne Lucet,et al.  Resolving the Network Reliability Problem with a Tree Decomposition of the Graph , 1997, OPODIS.

[24]  Roderic D. M. Page,et al.  Vertebrate Phylogenomics: Reconciled Trees and Gene Duplications , 2001, Pacific Symposium on Biocomputing.

[25]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[26]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[27]  Fedor V. Fomin,et al.  Tree decompositions with small cost , 2005, Discret. Appl. Math..

[28]  Rolf Niedermeier,et al.  Exact algorithms and applications for Tree-like Weighted Set Cover , 2006, J. Discrete Algorithms.

[29]  Rolf Niedermeier,et al.  Experiments on data reduction for optimal domination in networks , 2006, Ann. Oper. Res..

[30]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..