Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures

Microfluidics enables selection of different pathways in self-assembly processes, while allowing for an exquisite control over the processing of self-assembled materials.

[1]  R. Bar-Ziv,et al.  Two-dimensional flow of driven particles: a microfluidic pathway to the non-equilibrium frontier. , 2017, Chemical Society reviews.

[2]  Bartosz A Grzybowski,et al.  From dynamic self-assembly to networked chemical systems. , 2017, Chemical Society reviews.

[3]  J. Arauzo,et al.  Sub-micron spheres of an imine-based covalent organic framework: supramolecular functionalization and water-dispersibility , 2017 .

[4]  Chandan Maity,et al.  Free-standing supramolecular hydrogel objects by reaction-diffusion , 2017, Nature Communications.

[5]  Xuhui Huang,et al.  Real-time monitoring of hydrophobic aggregation reveals a critical role of cooperativity in hydrophobic effect , 2017, Nature Communications.

[6]  Y. S. Zhang,et al.  Interplay between materials and microfluidics. , 2017, Nature reviews. Materials.

[7]  Tom F. A. de Greef,et al.  Non-equilibrium supramolecular polymerization , 2017, Chemical Society reviews.

[8]  Yang Lan,et al.  Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials , 2017, Accounts of chemical research.

[9]  A. Caflisch,et al.  Dynamic microfluidic control of supramolecular peptide self-assembly , 2016, Nature Communications.

[10]  T. S. Mayor,et al.  Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients , 2016, Advanced materials.

[11]  Alexander K. Buell,et al.  Synthesis of Nonequilibrium Supramolecular Peptide Polymers on a Microfluidic Platform. , 2016, Journal of the American Chemical Society.

[12]  D. Amabilino,et al.  Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. , 2016, Chemical communications.

[13]  P. Doyle,et al.  Site‐Selective In Situ Grown Calcium Carbonate Micromodels with Tunable Geometry, Porosity, and Wettability , 2016 .

[14]  D. Amabilino,et al.  Milliseconds Make the Difference in the Far-from-Equilibrium Self-Assembly of Supramolecular Chiral Nanostructures. , 2016, Journal of the American Chemical Society.

[15]  Michael P. Brenner,et al.  Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator , 2015, Science.

[16]  Munenori Numata,et al.  Energy-dissipative Self-assembly Driven in Microflow: A Time-programmed Self-organization and Decomposition of Metastable Nanofibers , 2015 .

[17]  D. Amabilino,et al.  Bottom-up on-crystal in-chip formation of a conducting salt and a view of its restructuring: from organic insulator to conducting “switch” through microfluidic manipulation , 2015, Chemical science.

[18]  Yusuke Sanada,et al.  Creation of Kinetically Stabilized Porphyrin Microfilms Through Synchronized Hydrogen-Bonding Interactions in Microflow , 2015 .

[19]  Wenbin Du,et al.  A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures. , 2015, Angewandte Chemie.

[20]  Yusuke Sanada,et al.  Synchronized Activation of π-Conjugated Molecules toward Self-Assembly: Precisely Controlling the Hysteresis of the Metastable State along Microflow , 2015 .

[21]  Oren A Scherman,et al.  Interfacial assembly of dendritic microcapsules with host–guest chemistry , 2014, Nature Communications.

[22]  Shikuan Yang,et al.  Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing , 2014, ACS nano.

[23]  P. Kenis,et al.  X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination , 2014, Crystal growth & design.

[24]  S. Kitagawa,et al.  Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. , 2014, Chemical Society reviews.

[25]  Leroy Cronin,et al.  Discovery of gigantic molecular nanostructures using a flow reaction array as a search engine , 2014, Nature Communications.

[26]  D. Amabilino,et al.  Localized, stepwise template growth of functional nanowires from an amino acid-supported framework in a microfluidic chip. , 2014, ACS nano.

[27]  A. deMello,et al.  The past, present and potential for microfluidic reactor technology in chemical synthesis. , 2013, Nature chemistry.

[28]  M. Tanyeri,et al.  Fluidic‐Directed Assembly of Aligned Oligopeptides with π‐Conjugated Cores , 2013, Advanced materials.

[29]  Hoi Ri Moon,et al.  Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets. , 2013, Journal of the American Chemical Society.

[30]  Munenori Numata,et al.  Supramolecular polymerization in microfluidic channels: spatial control over multiple intermolecular interactions. , 2013, Chemistry.

[31]  Shoji Takeuchi,et al.  Metre-long cell-laden microfibres exhibit tissue morphologies and functions. , 2013, Nature materials.

[32]  Joanna Aizenberg,et al.  Rationally Designed Complex, Hierarchical Microarchitectures , 2013, Science.

[33]  V. Cabuil,et al.  Continuous multistep microfluidic assisted assembly of fluorescent, plasmonic, and magnetic nanostructures. , 2013, Angewandte Chemie.

[34]  E. W. Meijer,et al.  S 1 Supporting Information : Controlled perturbation of the thermodynamic equilibrium by microfluidic separation of porphyrin-based aggregates in a multi-component self-assembling system , 2012 .

[35]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[36]  Robert Puers,et al.  Digital Microfluidic High‐Throughput Printing of Single Metal‐Organic Framework Crystals , 2012, Advanced materials.

[37]  Jing Zhang,et al.  One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets , 2012, Science.

[38]  D. Amabilino,et al.  Self-assembly of supramolecular wires and cross-junctions and efficient electron tunnelling across them , 2011 .

[39]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[40]  Brian R Burg,et al.  A Microfluidic Approach for the Formation of Conductive Nanowires and Hollow Hybrid Structures , 2010, Advanced materials.

[41]  Stephen Mann,et al.  Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. , 2009, Nature materials.

[42]  E. Laukhina,et al.  Rich Phase Behavior in a Supramolecular Conducting Material Derived from an Organogelator , 2009 .

[43]  Bartosz A Grzybowski,et al.  Principles and implementations of dissipative (dynamic) self-assembly. , 2006, The journal of physical chemistry. B.

[44]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[45]  José L. Segura,et al.  New Concepts in Tetrathiafulvalene Chemistry. , 2001, Angewandte Chemie.

[46]  R. Austin,et al.  Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds , 1998 .

[47]  Douglas Phlip Supramolecular chemistry: Concepts and perspectives. By J.‐M. Lehn, VCH, Weinheim 1995, x, 271 pp., softcover, DM 58.00, ISBN 3‐527‐2931 1‐6 , 1996 .

[48]  J. Veciana,et al.  Supramolecular chiral functional materials , 2006 .