Temporary threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) after octave-band noise at 4 kHz.

Safety criteria for underwater sound produced during offshore pile driving are needed to protect marine mammals. A harbor porpoise was exposed to fatiguing noise at 18 sound pressure level (SPL) and duration combinations. Its temporary hearing threshold shift (TTS) and hearing recovery were quantified with a psychoacoustic technique. Octave-band white noise centered at 4 kHz was the fatiguing stimulus at three mean received SPLs (124, 136, and 148 dB re 1 μPa) and at six durations (7.5, 15, 30, 60, 120, and 240 min). Approximate received sound exposure levels (SELs) varied between 151 and 190 dB re 1 μPa(2) s. Hearing thresholds were determined for a narrow-band frequency-swept sine wave (3.9-4.1 kHz; 1 s) before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, and 96 min after exposure. The lowest SEL (151 dB re 1 μPa(2) s) which caused a significant TTS(1-4) was due to exposure to an SPL of 124 dB re 1 μPa for 7.5 min. The maximum TTS(1-4), induced after a 240 min exposure to 148 dB re 1 μPa, was around 15 dB at a SEL of 190 dB re 1 μPa(2) s. Recovery time following TTS varied between 4 min and under 96 min, depending on the exposure level, duration, and the TTS induced.

[1]  R. Schusterman,et al.  Temporary threshold shift in a harbor seal (Phoca vitulina) , 1996, The Journal of the Acoustical Society of America.

[2]  Whitlow W. L. Au,et al.  The Sonar of Dolphins , 1993, Springer New York.

[3]  J. Hildebrand,et al.  Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. , 2006, The Journal of the Acoustical Society of America.

[4]  R. Kastelein,et al.  The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz. , 2010, The Journal of the Acoustical Society of America.

[5]  James J Finneran,et al.  Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones. , 2005, The Journal of the Acoustical Society of America.

[6]  Jian Wang,et al.  Auditory plasticity and hyperactivity following cochlear damage , 2000, Hearing Research.

[7]  P. Madsen Marine mammals and noise: problems with root mean square sound pressure levels for transients. , 2005, The Journal of the Acoustical Society of America.

[8]  W. Yost Fundamentals of hearing: An introduction , 1977 .

[9]  Whitlow W L Au,et al.  Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise. , 2009, The Journal of the Acoustical Society of America.

[10]  C. E. Schlundt,et al.  Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool. , 2007, The Journal of the Acoustical Society of America.

[11]  James J Finneran,et al.  Growth and recovery of temporary threshold shift at 3 kHz in bottlenose dolphins: experimental data and mathematical models. , 2010, The Journal of the Acoustical Society of America.

[12]  Colleen Reichmuth,et al.  Onset, growth, and recovery of in-air temporary threshold shift in a California sea lion (Zalophus californianus). , 2007, The Journal of the Acoustical Society of America.

[13]  H. Roitblat,et al.  Psychoacoustic Studies of Dolphin and Whale Hearing , 2000 .

[14]  Kexiong Wang,et al.  Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis. , 2011, The Journal of the Acoustical Society of America.

[15]  Randall L. Dear,et al.  Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer. , 2003, The Journal of the Acoustical Society of America.

[16]  Whitlow W L Au,et al.  Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals. , 2002, The Journal of the Acoustical Society of America.

[17]  J H Mills,et al.  Temporary threshold shifts in humans exposed to octave bands of noise for 16 to 24 hours. , 1979, The Journal of the Acoustical Society of America.

[18]  James J Finneran,et al.  Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials. , 2007, The Journal of the Acoustical Society of America.

[19]  James J Finneran,et al.  Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus). , 2010, The Journal of the Acoustical Society of America.

[20]  W. Au,et al.  Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus). , 2003, The Journal of the Acoustical Society of America.

[21]  Donald Roe Ross,et al.  Mechanics of underwater noise , 1976 .

[22]  James J Finneran,et al.  Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermittent tones. , 2010, The Journal of the Acoustical Society of America.

[23]  W. Richardson Marine Mammals and Noise , 1995 .

[24]  J. Hildebrand,et al.  A 50 year comparison of ambient ocean noise near San Clemente Island: a bathymetrically complex coastal region off Southern California. , 2008, The Journal of the Acoustical Society of America.

[25]  R. Kastelein,et al.  Hearing thresholds of a harbor porpoise (Phocoena phocoena) for helicopter dipping sonar signals (1.43-1.33 kHz) (L). , 2011, The Journal of the Acoustical Society of America.

[26]  Whitlow W. L. Au,et al.  TEMPORARY THRESHOLD SHIFTS AFTER NOISE EXPOSURE IN THE BOTTLENOSE DOLPHIN (TURSIOPS TRUNCATUS) MEASURED USING EVOKED AUDITORY POTENTIALS , 2004 .

[27]  J. D. Miller,et al.  Temporary threshold shifts from prolonged exposure to noise. , 1972, Journal of speech and hearing research.

[28]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[29]  B. Møhl,et al.  Echolocation: high-frequency component in the click of the harbour porpoise (Phocoena ph. L.). , 1973, The Journal of the Acoustical Society of America.

[30]  Whitlow W. L. Au,et al.  Hearing in Whales and Dolphins: An Overview , 2000 .

[31]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[32]  T. Cornsweet,et al.  The staircrase-method in psychophysics. , 1962, The American journal of psychology.

[33]  Brandon L Southall,et al.  Underwater temporary threshold shift in pinnipeds: effects of noise level and duration. , 2005, The Journal of the Acoustical Society of America.

[34]  Whitlow W L Au,et al.  Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): the effects of noise level and duration. , 2009, The Journal of the Acoustical Society of America.

[35]  U. Siebert,et al.  Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. , 2009, The Journal of the Acoustical Society of America.

[36]  C. E. Schlundt,et al.  Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. , 2000, The Journal of the Acoustical Society of America.

[37]  P. E. Nachtigall,et al.  MARINE MAMMAL NOISE-EXPOSURE CRITERIA: INITIAL SCIENTIFIC RECOMMENDATIONS , 2008 .

[38]  R. Kastelein,et al.  Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1-2 kHz and 6-7 kHz bands) mimicking naval sonar signals. , 2011, The Journal of the Acoustical Society of America.

[39]  C. E. Schlundt,et al.  Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions. , 2000, The Journal of the Acoustical Society of America.

[40]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[41]  Martine Turgeon,et al.  Frequency discrimination duration effects for Huggins pitch and narrowband noise (L). , 2011, The Journal of the Acoustical Society of America.

[42]  James J Finneran,et al.  Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun. , 2002, The Journal of the Acoustical Society of America.

[43]  R. Schusterman,et al.  Underwater temporary threshold shift induced by octave-band noise in three species of pinniped. , 1999, The Journal of the Acoustical Society of America.

[44]  W Melnick,et al.  Human temporary threshold shift (TTS) and damage risk. , 1991, The Journal of the Acoustical Society of America.

[45]  R. Kastelein,et al.  Receiving beam patterns in the horizontal plane of a harbor porpoise (Phocoena phocoena). , 2005, The Journal of the Acoustical Society of America.