Theoretical and experimental investigations of an adsorption heat pump with heat transfer between two adsorbers

Es wurden zwei thermisch angetriebene Adsorptionswaermepumpen vorgestellt und untersucht. Im Gegensatz zu Adsorptionswaermepumpen mit nur einem Adsorber, arbeiten diese Systeme mit mehrfacher Waerme- und Stoffuebertragung zur Steigerung der Leistungszahl. Die Eigenschaften der in den Adsorbern verwendeten Sorptionsmittel wurden so ausgewaehlt, dass die bei der Adsorption und der Kondensation des Arbeitsstoffes freiwerdende Waerme eines Sorptionsmittels mit grossen Bindungskraeften dazu benutzt wird, ein Sorptionsmittel mit geringeren Bindungskraeften zu desorbieren. Dabei handelt es sich um einen zweistufigen Tripel-Effekt-Kreisprozess. Der zweite Kreisprozess, der untersucht wurde, nutzt nur die Adsorptionswaerme des Sorptionsmittels mit vergleichsweise grossen Bindungskraeften, um das Sorptionsmittel geringerer Bindungskraefte zu desobieren. Dieser Kreisprozess ist vom Typ einstufig Doppelt-Effekt. Computersimulationen eines stationaeren Adsorptionswaermepumpenprozesses ergaben fuer beide Kreisprozesse Leistungszahlen (COPs), die fuer das Sorptionsmittel/Arbeitsstoff-Tripel Zeolith/Silicagel/Wasser zwischen 0.5 und 1.0 lagen. Instationaere numerischen Simulationen des vielversprechenden einstufigen Doppel-Effekt-Kreisprozesses erreichten Leistungszahlen zwischen 0.3 und 0.6. Diese Leistungszahlen sind sehr stark von den Waermeuebertragungseigenschaften zwischen Sorptionsmittel und Waermetauscher abhaengig. Zur experimentellen Verifikation der numerishcen Ergebnisse wurde ein Laboraufbau realisiert, mit dem Leistungszahlen von 0.3 bis 0.4 gemessen wurden. Two thermally powered and quasi-continuously working heat pumps with two adsorbers effected by the principles of adsorption are investigated. In contrast to adsorption heat pumps with a single adsorber these systems deal with a multiple heat and mass transformation between two different adsorptive materials to obtain higher performances. The adsorptive characteristics of both adsorbents should be designed in a way that the heat released from both the desorption-cycle as well as the adsorption-cycle of an adsorbent of strong affinity will desorb the adsorbent of weak affinity. This process is called a two-stage triple-effect cycle which will be investigated in this report. The second investigated cycle uses only the adsorption heat released from the adsorbent of strong affinity to desorb the adsorbent of weak affinity. This is called a single-stage double-effect cycle. Calculations based on a simplified steady-state adsorption heat pump process result in COPs for both cycles between 0.5 and 1.0 with a zeolite/silica gel/water triple. More accurate dynamic numerical simulations of the promising single-stage double-effect cycle taking into account the consolidated adsorbent developed by the french laboratory CNRS-LIMSI (Meunier et al.) reduced the COP to 0.3-0.6. The value of the COP is highly dependent on the heat transfer characteristics of the adsorbent/heat exchanger connection, on their thermal conductivities, and in case of a consolidated adsorbent of its permeability. The COPs reached with the experimental setup are between 0.3 und 0.4, although the overall heat transfer coefficient of the employed finned tube heat exchanger (26-46 W/m2K) is acceptable. The main problems are the measured low amounts of condensation heat.

[1]  Francis Meunier,et al.  Second-law analysis of adsorptive refrigeration cycles: The role of thermal coupling entropy production , 1997 .

[2]  Nonisothermal adsorption of water by synthetic NaX zeolite pellets , 1988 .

[3]  F. Meunier,et al.  Effect of operating temperatures on the coefficient of performance of active carbon-methanol systems , 1988 .

[4]  E. A. Guggenheim,et al.  Statistical thermodynamics of super-lattices , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  M. Dubinin,et al.  Adsorption in micropores , 1967 .

[6]  Z. Dehouche,et al.  Modelling and simulation of heating/air-conditioning systems using the multi-hydride-thermal-wave concept , 1998 .

[7]  A. Adamson Physical chemistry of surfaces , 1960 .

[8]  Robert E. Critoph,et al.  Forced convection adsorption cycles , 1998 .

[9]  J. J. Guilleminot,et al.  Heat and mass transfer in a non-isothermal fixed bed solid adsorbent reactor: a uniform pressure-non-uniform temperature case , 1987 .

[10]  Pierre Neveu,et al.  A comparative thermodynamic study of sorption systems: second law analysis , 1996 .

[11]  F. Meunier,et al.  Solid sorption: An alternative to CFCs , 1993 .

[12]  William M. Worek,et al.  Effect of design and operating parameters on the performance of two-bed sorption heat pump systems , 1995 .

[13]  Sam V. Shelton Resedential space conditioning with solid sorption technology , 1993 .

[14]  Francis Meunier,et al.  Solid sorption heat powered cycles for cooling and heat pumping applications , 1998 .

[15]  William H. Press,et al.  Numerical recipes in C , 2002 .

[16]  Michel Goossens,et al.  The LaTeX companion , 1993 .

[17]  J. J. Guilleminot,et al.  Étude de cycles intermittents à adsorption solide pour la réfrigération solaire , 1980 .

[18]  S. Mauran,et al.  Heat and mass transfer in consolidated reacting beds for thermochemical systems , 1993 .

[19]  V. A. Astakhov,et al.  Description of Adsorption Equilibria of Vapors on Zeolites over Wide Ranges of Temperature and Pressure , 1971 .

[20]  B. Carlsson,et al.  Thermal conductivity of a microporous particulate medium: moist silica gel , 1984 .

[21]  R. T. Yang,et al.  Gas Separation by Adsorption Processes , 1987 .

[22]  F. Meunier Thermal swing adsorption refrigeration (heat pump) , 1993 .

[23]  W. Kast Adsorption aus der Gasphase — Grundlagen und Verfahren† , 1981 .

[24]  M. Pons,et al.  Etude du cycle intermittent charbon actif-méthanol en vue de la réalisation d'une machine à fabriquer de la glace fonctionnant à l'énergie solaire , 1982 .

[25]  M. Groll Reaction beds for dry sorption machines , 1993 .

[26]  Vargaftik,et al.  Handbook of Physical Properties of Liquids and Gases , 1983 .

[27]  M. Dubinin Theory of the physical adsorption of gases and vapors and adsorption properties of adsorbents of various natures and porous structures , 1960 .

[28]  J. J. Guilleminot,et al.  Solar Powered Solid Adsorption Cold Store , 1988 .

[29]  B. S. Petukhov Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties , 1970 .

[30]  William J. Wepfer,et al.  A two-temperature model of the regenerative solid-vapor heat pump , 1994 .

[31]  M. Pons,et al.  Second Law Analysis of Adsorption Cycles With Thermal Regeneration , 1996 .

[32]  Francis Meunier,et al.  Experimental study of cascading adsorption cycles , 1989 .

[33]  F. Meunier,et al.  Experimental results of a zeolite-water heat pump installed in a slaughter house , 1992 .

[34]  F. Meunier,et al.  Numerical study on coupled heat and mass transfers in an absorber with external fluid heating , 1995 .

[35]  William J. Wepfer,et al.  Ramp Wave Analysis of the Solid/Vapor Heat Pump , 1990 .

[36]  Jörg Kärger,et al.  Diffusion in Zeolites and Other Microporous Solids , 1992 .

[37]  Michel Pons,et al.  Numerical investigation of adsorptive heat pump systems with thermal wave heat regeneration under uniform-pressure conditions , 1997 .

[38]  D. H. Everett,et al.  Adsorption of Gases on Heterogeneous Surfaces , 1992 .

[39]  K. Kobe The properties of gases and liquids , 1959 .

[40]  H. Sahnoune,et al.  Mesure de la conductivité thermique d'une zéolithe , 1989 .

[41]  Francis Meunier,et al.  Analytical study of a gas-fired adsorptive air-conditioning system , 1996 .

[42]  F. Meunier Theoretical performances of solid adsorbent cascading cycles using the zeolite-water and active carbon-methanol pairs: four case studies , 1986 .

[43]  F. Meunier,et al.  Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles: Application to the Zeolite-water pair , 1985 .

[44]  Francis Meunier,et al.  Numerical analysis of adsorptive temperature wave regenerative heat pump , 1996 .

[45]  Donald W Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[46]  F. Meunier,et al.  EXPERIMENTAL TEMPERATURE FRONTS FOR ADSORPTIVE HEAT PUMP APPLICATIONS , 1996 .

[47]  Brian W. Kernighan,et al.  Programmieren in C - mit dem C-Reference Manual in deutscher Sprache; ANSI C (2. Ausgabe) , 1990 .

[48]  M. Pons Analysis of the adsorption cycles with thermal regeneration based on the entropic mean temperatures , 1997 .

[49]  P. E. Liley,et al.  Steam and Gas Tables with Computer Equations , 1984 .

[50]  J. Vőlkl,et al.  HEAT CONDUCTION IN ZEOLITE BEDS , 1982 .

[51]  F. Meunier,et al.  Predictive model and experimental results for a two-adsorber solid adsorption heat pump , 1988 .

[52]  F. Meunier Sorption solar cooling , 1994 .

[53]  Sam V. Shelton,et al.  Gas fired sorption heat pump development , 1993 .

[54]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .