Dealing with Missing Data: Algorithms Based on Fuzzy Set and Rough Set Theories
暂无分享,去创建一个
Jitender S. Deogun | Dan Li | William Spaulding | Bill Shuart | J. Deogun | Dan Li | William Spaulding | B. Shuart
[1] P. Roth. MISSING DATA: A CONCEPTUAL REVIEW FOR APPLIED PSYCHOLOGISTS , 1994 .
[2] Jitender S. Deogun,et al. Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method , 2004, Rough Sets and Current Trends in Computing.
[3] Rui Yan,et al. Comparison of Conventional and Rough K-Means Clustering , 2003, RSFDGrC.
[4] Anupam Joshi,et al. Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..
[5] Jerzy W. Grzymala-Busse,et al. Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction , 2004, Trans. Rough Sets.
[6] Jerzy W. Grzymala-Busse,et al. Rough Set Strategies to Data with Missing Attribute Values , 2006, Foundations and Novel Approaches in Data Mining.
[7] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[8] M. Narasimha Murty,et al. An adaptive rough fuzzy single pass algorithm for clustering large data sets , 2003, Pattern Recognit..
[9] Sholom M. Weiss,et al. Decision-Rule Solutions for Data Mining with Missing Values , 2000, IBERAMIA-SBIA.
[10] Jitender S. Deogun,et al. Interpolation Models for Spatiotemporal Association Mining , 2004, Fundam. Informaticae.
[11] Jitender S. Deogun,et al. Spatio-Temporal Association Mining for Un-sampled Sites , 2003, ISMIS.
[12] Sadaaki Miyamoto,et al. Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.
[13] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[14] Roderick J. A. Little,et al. Statistical Analysis with Missing Data , 1988 .
[15] James F. Peters,et al. K-means Indiscernibility Relation over Pixels , 2004, Rough Sets and Current Trends in Computing.
[16] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[17] Ingunn Myrtveit,et al. Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based Methods , 2001, IEEE Trans. Software Eng..
[18] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[19] Jerzy W. Grzymala-Busse,et al. Rough Sets , 1995, Commun. ACM.
[20] Shusaku Tsumoto,et al. Foundations of Intelligent Systems, 15th International Symposium, ISMIS 2005, Saratoga Springs, NY, USA, May 25-28, 2005, Proceedings , 2005, ISMIS.
[21] Jitender S. Deogun,et al. Interpolation Techniques for Geo-spatial Association Rule Mining , 2003, RSFDGrC.
[22] Lotfi A. Zadeh,et al. Fuzzy Sets , 1996, Inf. Control..
[23] Jitender S. Deogun,et al. Efficient Rule Discovery in a Geo-spatial Decision Support System , 2002, DG.O.
[24] Jerzy W. Grzymala-Busse,et al. A Rough Set Approach to Data with Missing Attribute Values , 2006, RSKT.
[25] Ergun Akleman,et al. Generalized distance functions , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.
[26] Tu Bao Ho,et al. Cluster-Based Algorithms for Dealing with Missing Values , 2002, PAKDD.
[27] Sankar K. Pal,et al. Rough fuzzy MLP: knowledge encoding and classification , 1998, IEEE Trans. Neural Networks.
[28] Ronald R. Yager,et al. Using fuzzy methods to model nearest neighbor rules , 2002, IEEE Trans. Syst. Man Cybern. Part B.