Tuberculosis infection and lung adenocarcinoma: Mendelian randomization and pathway analysis of genome-wide association study data from never-smoking Asian women.

X. Hua | Jianxin Shi | Y. Miyagi | Ping Wang | B. Qian | Y. Kamatani | Hongbing Shen | N. Rothman | S. Chanock | R. Vermeulen | N. Chatterjee | M. Tsuboi | Yuzhuo Wang | F. Song | T. Kohno | M. Yeager | Zhaoming Wang | Kai Yu | W. Tan | Chen Wu | D. Lin | Zhibin Hu | Jiang Chang | G. Jin | Tangchun Wu | X. Shu | Y. Xiang | Charles C. Chung | W. Zheng | L. Burdett | S. Berndt | C. Kang | H. Hosgood | M. Kubo | Guoping Wu | K. Matsuo | Hidemi Ito | W. Lim | Q. Cai | T. Honda | Y. Yatabe | T. Mitsudomi | R. Perng | Junjie Zhu | Jinming Yu | Y. Momozawa | C. Hsiung | A. Takahashi | F. Matsuda | Q. Lan | H. Sakamoto | S. Jiang | I. Chang | Minsun Song | V. Stevens | S. Tsugane | S. Matsumoto | K. Goto | K. Tsuta | G. Chang | Pan‐Chyr Yang | Y. Wu | J. Dai | Hongxia Ma | J. Park | H. Jeon | Tsung-Ying Yang | Kun-Chieh Chen | I. Laird-Offringa | W. Su | L. Chung | J. Choi | B. Ji | J. Hung | Linda Rieswijk | H. Pang | Jun Suk Kim | Yeul-Hong Kim | M. Shin | H. Kim | Yun-Chul Hong | C. Hsiao | I. Oh | Chong-Jen Yu | S. Kweon | H. Yoon | Kexin Chen | Lei Song | Hongyan Chen | D. Lu | N. Caporaso | M. Wong | Jiucun Wang | Li Jin | Y. Minamiya | Wei Wu | P. Guan | Baosen Zhou | B. Hicks | T. Shimazu | Y. Daigo | Amy Hutchinson | K. Shiraishi | T. Yamaji | M. Iwasaki | Li Liu | Huan Guo | B. Bassig | Wei Hu | B. Song | Sensen Cheng | K. Ashikawa | Kyoung-Mu Lee | Hong Zheng | Y. T. Kim | G. Jiang | Han Zhang | A. Goto | A. Seow | C. Marconett | Chien-Chung Lin | J. Ho | Ying Chen | F. Wei | Zhihua Yin | S. An | J. Sung | J. H. Kim | Y. Tsai | Y. Jung | Wen-Chang Wang | Xuchao Zhang | K. Park | S. Sung | Chung-Hsing Chen | Jun Xu | Chih-Liang Wang | Haixin Li | Y. Choi | I. Park | P. Xu | Qincheng He | Yao-Jen Li | Jihua Li | H. Kunitoh | S. Li | K. Fei | K. Shimizu | J. Wong | Kaiyun Yang | W. Seow | Yu-Min Chen | Zhehai Wang | H. Nakayama | Yunchao Huang | L. Chien | A. Chao | Shengchao A Li | P. Cui | Yangwu Ren | Xuelian Li | Chih-Yi Chen | Kazumi Tanaka | Batel Blechter | Jie Liu | Jianjun Liu | M. Hsin | Kathleen Wyatt | Yang Yang | Ko-Yung Sit | J. Ho | Shun‐ichi Watanabe | Jie Liu | Yu-Tang Gao | Young-chul Kim | Yuqing Li | J. Su | Hui-Ling Chen | Ming-Shyan Huang | Chien-Jen Chen | Ying Chen | M. Zhu | Hsien-Chin Lin | Kuan-Yu Chen | Kexin Chen | Fang‐Yu Tsai | Junjie Wu | W. Hsieh | Tzu-Yu Chen | Yao-Huei Fang | Shun-ichi Watanabe | L. Song | Shun-Ichi Watanabe | A. Hutchinson | M. Kubo | Yu-Tang Gao | Yu-Tang Gao | Kexin Chen | W. Tan | Y. T. Kim | W. Lim | Hongxia Ma

[1]  Ke Xu,et al.  An HLA class II locus, previously identified by a genome-wide association study, is also associated with susceptibility to pulmonary tuberculosis in a Chinese population. , 2018, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[2]  L. Kiemeney,et al.  Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity , 2018, Nature Communications.

[3]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[4]  G. Davey Smith,et al.  Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians , 2018, British Medical Journal.

[5]  P. Pizzo,et al.  Mitofusin 2: from functions to disease , 2018, Cell Death & Disease.

[6]  Biao Xu,et al.  Discovery of susceptibility loci associated with tuberculosis in Han Chinese , 2017, Human molecular genetics.

[7]  Shicheng Yu,et al.  The burden and challenges of tuberculosis in China: findings from the Global Burden of Disease Study 2015 , 2017, Scientific Reports.

[8]  A. West,et al.  Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. , 2017, Toxicology.

[9]  T. Mushiroda,et al.  Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis , 2017, Journal of Human Genetics.

[10]  Y. Xu,et al.  Association between MFN2 gene polymorphisms and the risk and prognosis of acute liver failure: a case-control study in a Chinese population , 2017, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[11]  J. Samet,et al.  Tuberculosis, smoking and risk for lung cancer incidence and mortality , 2016, International journal of cancer.

[12]  N. Eriksson,et al.  Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections , 2016, Nature Communications.

[13]  Y. Miyagi,et al.  Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma , 2016, Nature Communications.

[14]  Rafal S. Sobota,et al.  A Locus at 5q33.3 Confers Resistance to Tuberculosis in Highly Susceptible Individuals. , 2016, American journal of human genetics.

[15]  William Wheeler,et al.  A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations , 2016, bioRxiv.

[16]  Hongbing Shen,et al.  Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women. , 2016, Human molecular genetics.

[17]  Bjarni V. Halldórsson,et al.  HLA class II sequence variants influence tuberculosis risk in populations of European ancestry , 2016, Nature Genetics.

[18]  J. Casanova,et al.  A genome-wide association study of pulmonary tuberculosis in Morocco , 2016, Human Genetics.

[19]  Stephen Burgess,et al.  Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods , 2015, Statistics in medicine.

[20]  H. Wakelee,et al.  Lung Cancer in Never Smokers. , 2016, Advances in experimental medicine and biology.

[21]  Jian Su,et al.  Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. , 2015, Journal of the National Cancer Institute.

[22]  B. Han,et al.  Mitofusin-2 over-expresses and leads to dysregulation of cell cycle and cell invasion in lung adenocarcinoma , 2015, Medical Oncology.

[23]  J. Barrett,et al.  Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration , 2015, Nature Genetics.

[24]  K. Straif,et al.  Is previous respiratory disease a risk factor for lung cancer? , 2014, American journal of respiratory and critical care medicine.

[25]  Eric J Tchetgen Tchetgen,et al.  Methodological Challenges in Mendelian Randomization , 2014, Epidemiology.

[26]  T. VanderWeele,et al.  Mendelian randomization in health research: Using appropriate genetic variants and avoiding biased estimates☆ , 2014, Economics and human biology.

[27]  A. Price,et al.  Genome-wide association study of ancestry-specific TB risk in the South African Coloured population. , 2014, Human molecular genetics.

[28]  M. Lee,et al.  Pulmonary Tuberculosis and Lung Cancer Risk in Current Smokers: The Seoul Male Cancer Cohort Study , 2013, Journal of Korean medical science.

[29]  B. Qian,et al.  Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia , 2012, Nature Genetics.

[30]  D. Silverman,et al.  Risk of lung cancer associated with domestic use of coal in Xuanwei, China: retrospective cohort study , 2012, BMJ : British Medical Journal.

[31]  P. Boffetta,et al.  What proportion of lung cancer in never‐smokers can be attributed to known risk factors? , 2012, International journal of cancer.

[32]  J. Poderoso,et al.  Mitochondrial regulation of cell cycle and proliferation. , 2012, Antioxidants & redox signaling.

[33]  Yusuke Nakamura,et al.  Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis , 2012, Journal of Human Genetics.

[34]  Wen Tan,et al.  A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese , 2011, Nature Genetics.

[35]  T. VanderWeele,et al.  Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. , 2011, International journal of epidemiology.

[36]  D. Albanes,et al.  Increased Risk of Lung Cancer in Men with Tuberculosis in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[37]  Wei-Chih Liao,et al.  Increased Lung Cancer Risk among Patients with Pulmonary Tuberculosis: A Population Cohort Study , 2011, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[38]  Yusuke Nakamura,et al.  Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations , 2010, Nature Genetics.

[39]  A. Morris,et al.  Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2 , 2010, Nature Genetics.

[40]  Koichi Goto,et al.  Individuals susceptible to lung adenocarcinoma defined by combined HLA-DQA1 and TERT genotypes. , 2010, Carcinogenesis.

[41]  S. Wacholder,et al.  Lower Risk of Lung Cancer after Multiple Pneumonia Diagnoses , 2010, Cancer Epidemiology, Biomarkers & Prevention.

[42]  P. Guan,et al.  Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: A systematic review , 2009, International journal of cancer.

[43]  R. Bronson,et al.  Lung carcinogenesis induced by chronic tuberculosis infection: the experimental model and genetic control , 2009, Oncogene.

[44]  R. Pfeiffer,et al.  Tuberculosis and subsequent risk of lung cancer in Xuanwei, China , 2009, International journal of cancer.

[45]  N. Chatterjee,et al.  Lung cancer risk following detection of pulmonary scarring by chest radiography in the prostate, lung, colorectal, and ovarian cancer screening trial. , 2008, Archives of internal medicine.

[46]  Erika Avila-Tang,et al.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies , 2008, PLoS medicine.

[47]  N. Munshi,et al.  Dichloroacetate induces apoptosis in endometrial cancer cells. , 2008, Gynecologic oncology.

[48]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[49]  A. Gazdar,et al.  Lung cancer in never smokers — a different disease , 2007, Nature Reviews Cancer.

[50]  L. Holmberg,et al.  Lung cancer incidence in never smokers. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[51]  Sébastien Bonnet,et al.  A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. , 2007, Cancer cell.

[52]  J. Robins,et al.  Instruments for Causal Inference: An Epidemiologist's Dream? , 2006, Epidemiology.

[53]  O. Bah‐sow,et al.  Pulmonary Tuberculosis: Diagnosis and Treatment , 1928, BMJ : British Medical Journal.

[54]  A. Knudson Hereditary cancer: Two hits revisited , 2005, Journal of Cancer Research and Clinical Oncology.

[55]  M. Thornquist,et al.  Prior Lung Disease and Risk of Lung Cancer in a Large Prospective Study , 2004, Cancer Causes & Control.

[56]  R. Brownson,et al.  Previous lung disease and lung cancer risk among women (United States) , 2000, Cancer Causes & Control.

[57]  A. Santel,et al.  Control of mitochondrial morphology by a human mitofusin. , 2001, Journal of cell science.

[58]  S. Mayne,et al.  Previous lung disease and risk of lung cancer among men and women nonsmokers. , 1999, American journal of epidemiology.

[59]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.