Integrating regulatory information via combinatorial control of the transcription cycle

Combinatorial regulation of gene expression by multiple transcription factors (TFs) enables cells to carry out sophisticated computations that are key to cellular decision-making. How is the information contained in multiple TF binding sites integrated to dictate the rate of transcription? The dominant model is that direct or indirect physical interactions between TFs enable them to combinatorially recruit each other and RNA polymerase to the promoter. Here we develop a quantitative framework to explore an alternative model, where combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Our results clarify the null hypotheses for independent action of TFs and show that combinatorial control of the transcription cycle can generate a wide range of analog and Boolean computations without requiring the input regulators to be simultaneously co-localized in the nucleus. This work emphasizes the importance of deciphering TF function beyond activation and repression, highlights the role of the basal promoter in processing regulatory information and suggests qualitative explanations for the flexibility of regulatory evolution.

[1]  Zeba Wunderlich,et al.  Krüppel Expression Levels Are Maintained through Compensatory Evolution of Shadow Enhancers. , 2016, Cell reports.

[2]  Gerald Stampfel,et al.  Transcriptional regulators form diverse groups with context-dependent regulatory functions , 2015, Nature.

[3]  R. Phillips Theory in Biology: Figure 1 or Figure 7? , 2015, Trends in cell biology.

[4]  Michael B. Elowitz,et al.  Combinatorial gene regulation by modulation of relative pulse timing , 2015, Nature.

[5]  T. Juven-Gershon,et al.  The core promoter: At the heart of gene expression. , 2015, Biochimica et biophysica acta.

[6]  Hernan G. Garcia,et al.  Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo , 2015, eLife.

[7]  Felix Naef,et al.  Structure of silent transcription intervals and noise characteristics of mammalian genes , 2015, Molecular systems biology.

[8]  Martina Rath,et al.  Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation , 2014, Nature.

[9]  Zeba Wunderlich,et al.  Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo , 2015, Proceedings of the National Academy of Sciences.

[10]  Sandeep Choubey,et al.  Deciphering Transcriptional Dynamics In Vivo by Counting Nascent RNA Molecules , 2013, PLoS Comput. Biol..

[11]  Hiroshi Kimura,et al.  Regulation of RNA polymerase II activation by histone acetylation in single living cells , 2014, Nature.

[12]  H. Bussemaker,et al.  In search of the determinants of enhancer-promoter interaction specificity. , 2014, Trends in cell biology.

[13]  Michael B. Elowitz,et al.  Pulsatile Dynamics in the Yeast Proteome , 2014, Current Biology.

[14]  James J. Collins,et al.  Using Targeted Chromatin Regulators to Engineer Combinatorial and Spatial Transcriptional Regulation , 2014, Cell.

[15]  T. Juven-Gershon,et al.  The core promoter composition establishes a new dimension in developmental gene networks , 2014, Nucleus.

[16]  Jeremy Gunawardena,et al.  Models in biology: ‘accurate descriptions of our pathetic thinking’ , 2014, BMC Biology.

[17]  J. Lis,et al.  Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons , 2014, eLife.

[18]  E. Segal,et al.  The grammar of transcriptional regulation , 2014, Human Genetics.

[19]  Jacqueline M. Dresch,et al.  A primer on thermodynamic-based models for deciphering transcriptional regulatory logic. , 2013, Biochimica et biophysica acta.

[20]  J. Shendure,et al.  Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model , 2013, Nature Genetics.

[21]  A. Coulon,et al.  Eukaryotic transcriptional dynamics: from single molecules to cell populations , 2013, Nature Reviews Genetics.

[22]  Jane Kondev,et al.  Regulation of noise in gene expression. , 2013, Annual review of biophysics.

[23]  Rob Phillips,et al.  Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli , 2012, PLoS Comput. Biol..

[24]  John T. Lis,et al.  Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans , 2012, Nature Reviews Genetics.

[25]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[26]  B. Kholodenko,et al.  Versatility of Cooperative Transcriptional Activation: A Thermodynamical Modeling Analysis for Greater-Than-Additive and Less-Than-Additive Effects , 2012, PloS one.

[27]  Z. Yakhini,et al.  Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters , 2012, Nature Biotechnology.

[28]  Marc S. Sherman,et al.  Thermodynamic State Ensemble Models of cis-Regulation , 2012, PLoS Comput. Biol..

[29]  Joseph B Hiatt,et al.  Massively parallel functional dissection of mammalian enhancers in vivo , 2012, Nature Biotechnology.

[30]  J. Gelles,et al.  Mechanism of Transcription Initiation at an Activator-Dependent Promoter Defined by Single-Molecule Observation , 2012, Cell.

[31]  Scott Barolo,et al.  Shadow enhancers: Frequently asked questions about distributed cis‐regulatory information and enhancer redundancy , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  Erin K O'Shea,et al.  Signal-dependent dynamics of transcription factor translocation controls gene expression , 2011, Nature Structural &Molecular Biology.

[33]  A. Stathopoulos,et al.  Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression , 2011, Development.

[34]  Eric H Davidson,et al.  Evolutionary bioscience as regulatory systems biology. , 2011, Developmental biology.

[35]  Michael Levine,et al.  Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo , 2011, Proceedings of the National Academy of Sciences.

[36]  Rob Phillips,et al.  Quantitative dissection of the simple repression input–output function , 2011, Proceedings of the National Academy of Sciences.

[37]  Galit Lahav,et al.  Stimulus-dependent dynamics of p53 in single cells , 2011, Molecular systems biology.

[38]  Rob Phillips,et al.  Effect of Promoter Architecture on the Cell-to-Cell Variability in Gene Expression , 2010, PLoS Comput. Biol..

[39]  S. Nechaev,et al.  Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. , 2011, Biochimica et biophysica acta.

[40]  Jørgen Kjems,et al.  Crosstalk between mRNA 3' end processing and transcription initiation. , 2010, Molecular cell.

[41]  Xin He,et al.  Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression , 2010, PLoS Comput. Biol..

[42]  M. Fujioka,et al.  Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. , 2010, Developmental biology.

[43]  G. K. Davis,et al.  Phenotypic robustness conferred by apparently redundant transcriptional enhancers , 2010, Nature.

[44]  D. Wassarman,et al.  Promoting developmental transcription , 2010, Development.

[45]  John T. Lis,et al.  Defining mechanisms that regulate RNA polymerase II transcription in vivo , 2009, Nature.

[46]  E. Siggia,et al.  Analysis of Combinatorial cis-Regulation in Synthetic and Genomic Promoters , 2008, Nature.

[47]  J. T. Kadonaga,et al.  Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. , 2008, Genes & development.

[48]  M. Elowitz,et al.  Frequency-modulated nuclear localization bursts coordinate gene regulation , 2008, Nature.

[49]  David A. Hendrix,et al.  Promoter elements associated with RNA Pol II stalling in the Drosophila embryo , 2008, Proceedings of the National Academy of Sciences.

[50]  K. Struhl,et al.  The transition from transcriptional initiation to elongation. , 2008, Current opinion in genetics & development.

[51]  Jané Kondev,et al.  Transcriptional control of noise in gene expression , 2008, Proceedings of the National Academy of Sciences.

[52]  Hao Li,et al.  Evolution of Eukaryotic Transcription Circuits , 2008, Science.

[53]  Manolis Kellis,et al.  RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo , 2007, Nature Genetics.

[54]  Martin Fussenegger,et al.  Mammalian synthetic biology: engineering of sophisticated gene networks. , 2007, Journal of biotechnology.

[55]  Hiroshi Handa,et al.  Differential Regulation of NF-κB by Elongation Factors Is Determined by Core Promoter Type , 2007, Molecular and Cellular Biology.

[56]  Kevin Struhl,et al.  The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. , 2006, Molecular cell.

[57]  A. E. Tsong,et al.  Evolution of alternative transcriptional circuits with identical logic , 2006, Nature.

[58]  Sorin Istrail,et al.  Logic Functions of the Genomic Cis-regulatory Code , 2005, UC.

[59]  A. Hinnebusch,et al.  Simultaneous Recruitment of Coactivators by Gcn4p Stimulates Multiple Steps of Transcription In Vivo , 2005, Molecular and Cellular Biology.

[60]  Michael R Green,et al.  Eukaryotic transcription activation: right on target. , 2005, Molecular cell.

[61]  Danny Reinberg,et al.  Functional characterization of core promoter elements: DPE-specific transcription requires the protein kinase CK2 and the PC4 coactivator. , 2005, Molecular cell.

[62]  S. Hahn,et al.  Function of a eukaryotic transcription activator during the transcription cycle. , 2005, Molecular cell.

[63]  Sorin Istrail,et al.  Logic Functions of the Genomic Cis-regulatory Code , 2005, UC.

[64]  M. Kreitman,et al.  Functional Evolution of a cis-Regulatory Module , 2005, PLoS biology.

[65]  B. Peterlin,et al.  A New Paradigm in Eukaryotic Biology: HIV Tat and the Control of Transcriptional Elongation , 2005, PLoS biology.

[66]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[67]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[68]  Steven Hahn,et al.  Structure and mechanism of the RNA polymerase II transcription machinery , 2004, Nature Structural &Molecular Biology.

[69]  M. Cervera,et al.  Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types. , 2004, Molecular biology of the cell.

[70]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[71]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[72]  Siddhartha Roy,et al.  Kinetics of Transcription Initiation at lacP1 , 2003, Journal of Biological Chemistry.

[73]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Veitia,et al.  A sigmoidal transcriptional response: cooperativity, synergy and dosage effects , 2003, Biological reviews of the Cambridge Philosophical Society.

[75]  G. Rubin,et al.  Computational analysis of core promoters in the Drosophila genome , 2002, Genome Biology.

[76]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[77]  J. T. Kadonaga,et al.  Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. , 2001, Genes & development.

[78]  A. Salvador,et al.  Synergism analysis of biochemical systems. I. Conceptual framework. , 2000, Mathematical biosciences.

[79]  J Wang,et al.  A mathematical model for synergistic eukaryotic gene activation. , 1999, Journal of molecular biology.

[80]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[81]  H. Jäckle,et al.  Cooperative DNA‐binding by Bicoid provides a mechanism for threshold‐dependent gene activation in the Drosophila embryo , 1998, The EMBO journal.

[82]  Steven A. Brown,et al.  Transcriptional activation domains stimulate initiation and elongation at different times and via different residues , 1998, The EMBO journal.

[83]  M. Carey,et al.  The Enhanceosome and Transcriptional Synergy , 1998, Cell.

[84]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[85]  E. Gonzalez-Couto,et al.  Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Ptashne,et al.  Transcriptional activation by recruitment , 1997, Nature.

[87]  J. Greenblatt,et al.  Three functional classes of transcriptional activation domain , 1996, Molecular and cellular biology.

[88]  B. Cullen,et al.  Synergistic enhancement of both initiation and elongation by acidic transcription activation domains. , 1996, The EMBO journal.

[89]  T. Maniatis,et al.  Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome , 1995, Cell.

[90]  S. Smale,et al.  Core promoter specificities of the Sp1 and VP16 transcriptional activation domains , 1995, Molecular and cellular biology.

[91]  J. Peccoud,et al.  Markovian Modeling of Gene-Product Synthesis , 1995 .

[92]  Winship Herr,et al.  Basal promoter elements as a selective determinant of transcriptional activator function , 1995, Nature.

[93]  C C Adams,et al.  Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative , 1995, Molecular and cellular biology.

[94]  D. Bentley,et al.  Transcriptional elongation by RNA polymerase II is stimulated by transactivators , 1994, Cell.

[95]  D. Herschlag,et al.  Synergism in transcriptional activation: a kinetic view. , 1993, Genes & development.

[96]  Kevin Struhl,et al.  Mechanisms for diversity in gene expression patterns , 1991, Neuron.

[97]  M Hoch,et al.  cis‐acting control elements for Krüppel expression in the Drosophila embryo. , 1990, The EMBO journal.

[98]  Michael Carey,et al.  A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives , 1990, Nature.

[99]  Michael Carey,et al.  How different eukaryotic transcriptional activators can cooperate promiscuously , 1990, Nature.

[100]  W. McClure,et al.  Mechanism and control of transcription initiation in prokaryotes. , 1985, Annual review of biochemistry.