Enhancing the capacitive deionization performance of NaMnO2 by interface engineering and redox-reaction

Two layered NaMnO2 nanomaterials with expanded interlayer spacing were evaluated as HCDI redox-active intercalation electrodes and showed high CDI performance.

[1]  Yubo Zhao,et al.  A core–shell heterostructured CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization , 2019, Journal of Materials Chemistry A.

[2]  Tao Yang,et al.  Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination , 2019, Chemical Engineering Journal.

[3]  Dezhi Kong,et al.  The efficient faradaic Li4Ti5O12@C electrode exceeds the membrane capacitive desalination performance , 2019, Journal of Materials Chemistry A.

[4]  Chung-Yul Yoo,et al.  Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. , 2019, Water research.

[5]  Yusuke Yamauchi,et al.  Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination , 2019, Environmental Science: Nano.

[6]  H. Yang,et al.  Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes. , 2019, Small.

[7]  F. Banat,et al.  Ag-Cu bimetallic nanoparticle decorated graphene nanocomposite as an effective anode material for hybrid capacitive deionization (HCDI) system , 2019, Electrochimica Acta.

[8]  H. Yang,et al.  A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. , 2019, ACS applied materials & interfaces.

[9]  M. Sawangphruk,et al.  Effect of intercalated alkali ions in layered manganese oxide nanosheets as neutral electrochemical capacitors. , 2019, Chemical communications.

[10]  Shenglin Jiang,et al.  Highly compact, free-standing porous electrodes from polymer-derived nanoporous carbons for efficient electrochemical capacitive deionization , 2019, Journal of Materials Chemistry A.

[11]  Hui Ying Yang,et al.  Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. , 2019, ACS applied materials & interfaces.

[12]  Ying Wang,et al.  Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. , 2019, Nano letters.

[13]  P. M. Biesheuvel,et al.  Exceptional Water Desalination Performance with Anion‐Selective Electrodes , 2019, Advanced materials.

[14]  H. Lei,et al.  Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy , 2018 .

[15]  K. Jiang,et al.  MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage , 2018, Carbon.

[16]  Liyi Shi,et al.  Removal of ions from saline water using N, P co-doped 3D hierarchical carbon architectures via capacitive deionization , 2018 .

[17]  Menachem Elimelech,et al.  High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes , 2018, Environmental Science & Technology Letters.

[18]  E. Pomerantseva,et al.  Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. , 2018, ACS applied materials & interfaces.

[19]  Tingting Yan,et al.  N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization , 2018 .

[20]  Gang Wang,et al.  BCN nanosheets templated by g-C3N4 for high performance capacitive deionization , 2018 .

[21]  Chengzhong Yu,et al.  Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization , 2018 .

[22]  Jiho Lee,et al.  Battery Electrode Materials with Omnivalent Cation Storage for Fast and Charge‐Efficient Ion Removal of Asymmetric Capacitive Deionization , 2018, Advanced Functional Materials.

[23]  Ziyang Dai,et al.  Versatile MnO2/CNT Putty‐Like Composites for High‐Rate Lithium‐Ion Batteries , 2018 .

[24]  Liyi Shi,et al.  Improved capacitive deionization by using 3D intercalated graphene sheet–sphere nanocomposite architectures , 2018 .

[25]  Y. Gogotsi,et al.  Porous Cryo-Dried MXene for Efficient Capacitive Deionization , 2018 .

[26]  Miao Wang,et al.  Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization , 2018 .

[27]  Karren L. More,et al.  Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization , 2018 .

[28]  V. Presser,et al.  Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation , 2018 .

[29]  Yu Fu,et al.  Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode , 2018 .

[30]  Volker Presser,et al.  Water Desalination with Energy Storage Electrode Materials , 2018 .

[31]  Hyung Gyu Park,et al.  Pseudocapacitive Coating for Effective Capacitive Deionization. , 2018, ACS applied materials & interfaces.

[32]  Chia-Hung Hou,et al.  Incorporating Manganese Dioxide in Carbon Nanotube–Chitosan as a Pseudocapacitive Composite Electrode for High-Performance Desalination , 2017 .

[33]  Volker Presser,et al.  Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination , 2017 .

[34]  Hongsik Yoon,et al.  Hybrid capacitive deionization with Ag coated carbon composite electrode , 2017 .

[35]  Liyi Shi,et al.  High Salt Removal Capacity of Metal–Organic Gel Derived Porous Carbon for Capacitive Deionization , 2017 .

[36]  Fuming Chen,et al.  Dual-ions electrochemical deionization: a desalination generator , 2017 .

[37]  M. Sawangphruk,et al.  Charge storage performances and mechanisms of MnO2 nanospheres, nanorods, nanotubes and nanosheets. , 2017, Nanoscale.

[38]  Gang Wang,et al.  Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. , 2017, Environmental science & technology.

[39]  Meng Ding,et al.  A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes. , 2017, Nanoscale.

[40]  Xiuyun Sun,et al.  Nitrogen-Doped Hollow Mesoporous Carbon Spheres for Efficient Water Desalination by Capacitive Deionization , 2017 .

[41]  Y. Meng,et al.  Self-branched α-MnO2/δ-MnO2 heterojunction nanowires with enhanced pseudocapacitance , 2017 .

[42]  Zirong Tang,et al.  Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors , 2017, Nanoscale Research Letters.

[43]  Ziyu Hu,et al.  Cation Intercalation in Manganese Oxide Nanosheets: Effects on Lithium and Sodium Storage. , 2016, Angewandte Chemie.

[44]  Yu-Hsuan Liu,et al.  Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization , 2016 .

[45]  X. Duan,et al.  Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination , 2016, Nano Research.

[46]  Hao Yan,et al.  Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. , 2016, Angewandte Chemie.

[47]  Choonsoo Kim,et al.  Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization , 2016 .

[48]  Gang Wang,et al.  Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. , 2016, Water research.

[49]  Xin Gao,et al.  Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior , 2015 .

[50]  Kai Zhang,et al.  Nanostructured Mn-based oxides for electrochemical energy storage and conversion. , 2015, Chemical Society reviews.

[51]  Choonsoo Kim,et al.  Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques , 2014 .

[52]  J. Choi,et al.  Site-specific transition metal occupation in multicomponent pyrophosphate for improved electrochemical and thermal properties in lithium battery cathodes: a combined experimental and theoretical study. , 2012, Journal of the American Chemical Society.

[53]  Yi Cui,et al.  A desalination battery. , 2012, Nano letters.

[54]  Linda Zou,et al.  Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology , 2011 .

[55]  F. Favier,et al.  In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors , 2011 .

[56]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[57]  X. Zhao,et al.  Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets , 2011 .

[58]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[59]  M. Burghard,et al.  Diameter-Dependent Combination Modes in Individual Single-Walled Carbon Nanotubes , 2002 .