Calculation of foundation uplift effects using a numerical Laplace transform

A Laplace domain technique to calculate non-linear foundation uplift effects is presented. Analysis in the Laplace domain permits the modelling of the building structure more precisely by using continuous mass models. Different damping models for every single finite element of the sturcture can easily be utilized via the correspondence principle. Moreover, it is possible to use the substructure method, which permits the modelling of the soil and the building structure separately by different methods. Using, e.g. the boundary element method for the soil, the damping mechanism caused by waves travelling away from the foundation (geometric damping effects) is implicitly included. The model can be condensed to the relevant degrees of freedom of the structure. Two illustrative numerical examples demonstrate the applicability of the method presented.

[1]  A. Papoulis,et al.  The Fourier Integral and Its Applications , 1963 .

[2]  James Daniel Kawamoto Solution of nonlinear dynamic structural systems by a hybrid frequency-time domain approach , 1983 .

[3]  John P. Wolf,et al.  A comparison of time-domain transmitting boundaries , 1986 .

[4]  B. Lazan Damping of materials and members in structural mechanics , 1968 .

[5]  H. Waller,et al.  Numerisches Berechnen von Schwingungs — und Kriechvorgängen mit der Laplace-Transformation , 1975 .

[6]  S. H. Crandall The role of damping in vibration theory , 1970 .

[7]  John P. Wolf,et al.  Non-linear soil–structure interaction analysis based on the boundary-element method in time domain with application to embedded foundation , 1986 .

[8]  Pol D. Spanos,et al.  HARMONIC ROCKING OF RIGID BLOCK ON FLEXIBLE FOUNDATION , 1986 .

[9]  G. Schmid,et al.  Berechnung dynamisch belasteter rahmenartiger Stabtragwerke mit lokal auftretenden Nichtlinearitäten unter Verwendung der Laplace-Transformation , 1988 .

[10]  Anil K. Chopra,et al.  Dynamics of Structures on Two‐Spring Foundation Allowed to Uplift , 1984 .

[11]  Diskrete Laplace-Transformation. Ein zweckmäßiges Rechenverfahren für schwachgedämpfte Schwingungssysteme bei nichtperiodischer Erregung , 1982 .

[12]  W. Matthees,et al.  A strategy for the solution of soil dynamic problems involving plasticity by transform , 1982 .

[13]  G. V. Narayanan,et al.  Dynamic response of frameworks by numerical laplace transform , 1983 .

[14]  G. V. Narayanan,et al.  Numerical operational methods for time‐dependent linear problems , 1982 .