Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search

The original PageRank algorithm for improving the ranking of search-query results computes a single vector, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search results, we propose computing a set of PageRank vectors, biased using a set of representative topics, to capture more accurately the notion of importance with respect to a particular topic. For ordinary keyword search queries, we compute the topic-sensitive PageRank scores for pages satisfying the query using the topic of the query keywords. For searches done in context (e.g., when the search query is performed by highlighting words in a Web page), we compute the topic-sensitive PageRank scores using the topic of the context in which the query appeared. By using linear combinations of these (precomputed) biased PageRank vectors to generate context-specific importance scores for pages at query time, we show that we can generate more accurate rankings than with a single, generic PageRank vector. We describe techniques for efficiently implementing a large-scale search system based on the topic-sensitive PageRank scheme.

[1]  Marco Gori,et al.  Web page scoring systems for horizontal and vertical search , 2002, WWW.

[2]  Krishna Bharat,et al.  Improved algorithms for topic distillation in a hyperlinked environment , 1998, SIGIR '98.

[3]  Matthew Richardson,et al.  The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank , 2001, NIPS.

[4]  Ian H. Witten,et al.  Managing gigabytes , 1994 .

[5]  Sriram Raghavan,et al.  WebBase: a repository of Web pages , 2000, Comput. Networks.

[6]  Jon M. Kleinberg,et al.  Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text , 1998, Comput. Networks.

[7]  Alberto O. Mendelzon,et al.  What is this page known for? Computing Web page reputations , 2000, Comput. Networks.

[8]  Chaomei Chen,et al.  Mining the Web: Discovering knowledge from hypertext data , 2004, J. Assoc. Inf. Sci. Technol..

[9]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[10]  Ehud Rivlin,et al.  Placing search in context: the concept revisited , 2002, TOIS.

[11]  Gene H. Golub,et al.  Extrapolation methods for accelerating PageRank computations , 2003, WWW '03.

[12]  David M. Pennock,et al.  The structure of broad topics on the web , 2002, WWW.

[13]  Krishna Bharat,et al.  When experts agree: using non-affiliated experts to rank popular topics , 2001, TOIS.

[14]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[15]  Taher H. Haveliwala Efficient Encodings for Document Ranking Vectors (Extended Abstract) , 2003, International Conference on Internet Computing.

[16]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[17]  Taher H. Haveliwala Efficient Computation of PageRank , 1999 .

[18]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[19]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[20]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[21]  Rajeev Motwani,et al.  What can you do with a Web in your Pocket? , 1998, IEEE Data Eng. Bull..

[22]  David M. Pennock,et al.  Winners don't take all: Characterizing the competition for links on the web , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[24]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[25]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.