NEW ESTIMATES FOR EVANS' VARIATIONAL APPROACH TO WEAK KAM THEORY
暂无分享,去创建一个
[1] Lawrence C. Evans,et al. Further PDE methods for weak KAM theory , 2009 .
[2] V. Kaloshin. MATHER THEORY, WEAK KAM THEORY, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE'S , 2005 .
[3] Lawrence C. Evans,et al. Some new PDE methods for weak KAM theory , 2003 .
[4] A. Fathi,et al. Solutions KAM faibles conjugues et barrires de Peierls , 1997 .
[5] R. Mañé,et al. Lagrangian flows: The dynamics of globally minimizing orbits , 1997 .
[6] Robert M. Corless,et al. A sequence of series for the Lambert W function , 1997, ISSAC.
[7] A. Fathi,et al. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , 1997 .
[8] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[9] J. Mather,et al. Action minimizing invariant measures for positive definite Lagrangian systems , 1991 .
[10] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[11] J. Moser,et al. New aspects in the theory of stability of Hamiltonian systems , 1958 .
[12] Maurizio Falcone,et al. Optimization techniques for the computation of the effective Hamiltonian , 2010 .
[13] J. Mather. Variational construction of connecting orbits , 1993 .
[14] J. Mather,et al. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .