Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models

This article develops a class of models called sender/receiver finite mixture exponential random graph models (SRFM-ERGMs). This class of models extends the existing exponential random graph modeling framework to allow analysts to model unobserved heterogeneity in the effects of nodal covariates and network features without a block structure. An empirical example regarding substance use among adolescents is presented. Simulations across a variety of conditions are used to evaluate the performance of this technique. We conclude that unobserved heterogeneity in effects of nodal covariates can be a major cause of misfit in network models, and the SRFM-ERGM approach can alleviate this misfit. Implications for the analysis of social networks in psychological science are discussed.

[1]  Yishay Mansour,et al.  An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering , 1997, UAI.

[2]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[3]  Johan Koskinen,et al.  Using latent variables to account for heterogeneity in exponential family random graph models , 2009 .

[4]  P. Pattison LOGIT MODELS AND LOGISTIC REGRESSIONS FOR SOCIAL NETWORKS: I. AN INTRODUCTION TO MARKOV GRAPHS AND p* STANLEY WASSERMAN UNIVERSITY OF ILLINOIS , 1996 .

[5]  P. Molenaar A Manifesto on Psychology as Idiographic Science: Bringing the Person Back Into Scientific Psychology, This Time Forever , 2004 .

[6]  T. Snijders,et al.  p2: a random effects model with covariates for directed graphs , 2004 .

[7]  D. Hunter,et al.  Inference in Curved Exponential Family Models for Networks , 2006 .

[8]  Michael J. Brusco,et al.  Clusterwise p* models for social network analysis , 2011, Stat. Anal. Data Min..

[9]  Katariina Salmela-Aro,et al.  Pressure to drink but not to smoke: disentangling selection and socialization in adolescent peer networks and peer groups. , 2010, Journal of adolescence.

[10]  A central limit theorem for conditionally centred random fields with an application to Markov fields , 1998 .

[11]  C. Coulton,et al.  Interaction Effects in Multiple Regression , 1993 .

[12]  Simon Briscoe,et al.  Editorial: House price indices , 2007 .

[13]  Mark S Handcock,et al.  Local dependence in random graph models: characterization, properties and statistical inference , 2015, Journal of the American Statistical Association.

[14]  Tracy M. Sweet,et al.  Incorporating Covariates Into Stochastic Blockmodels , 2015 .

[15]  Garry Robins,et al.  Network models for social selection processes , 2001, Soc. Networks.

[16]  Alberto Caimo,et al.  Bayesian exponential random graph models with nodal random effects , 2014, Soc. Networks.

[17]  M. Brusco,et al.  Evaluating mixture modeling for clustering: recommendations and cautions. , 2011, Psychological methods.

[18]  Marijtje A. J. van Duijn,et al.  The Multilevel p2 Model , 2006 .

[19]  Christian Tallberg A BAYESIAN APPROACH TO MODELING STOCHASTIC BLOCKSTRUCTURES WITH COVARIATES , 2004 .

[20]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[21]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[22]  M. Brusco,et al.  K-Means Clustering and Mixture Model Clustering: Reply to McLachlan (2011) and Vermunt (2011) , 2011 .

[23]  Michael J. Symons,et al.  Clustering criteria and multivariate normal mixtures , 1981 .

[24]  Pavel N Krivitsky,et al.  A separable model for dynamic networks , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[25]  Gérard Govaert,et al.  Comparison of the mixture and the classification maximum likelihood in cluster analysis with binary data , 1996 .

[26]  M. Prinstein,et al.  Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes. , 2011, Journal of research on adolescence : the official journal of the Society for Research on Adolescence.

[27]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..

[28]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[29]  Thomas E. Nichols,et al.  A Bayesian Model of Category-Specific Emotional Brain Responses , 2015, PLoS Comput. Biol..

[30]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .

[31]  D. J. Strauss,et al.  Pseudolikelihood Estimation for Social Networks , 1990 .

[32]  Peter G. Bryant,et al.  Large-sample results for optimization-based clustering methods , 1991 .

[33]  Gérard Govaert,et al.  An improvement of the NEC criterion for assessing the number of clusters in a mixture model , 1999, Pattern Recognit. Lett..

[34]  P. Holland,et al.  An Exponential Family of Probability Distributions for Directed Graphs , 1981 .

[35]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[36]  Geoffrey J. McLachlan,et al.  ML Fitting of Mixture Models , 2005 .

[37]  Mark S. Handcock,et al.  A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models , 2009, Soc. Networks.

[38]  L. Hubert,et al.  Comparing partitions , 1985 .

[39]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[40]  T. Achenbach Manual for the Youth Self-Report and 1991 profile , 1991 .

[41]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[42]  P. Diaconis,et al.  Estimating and understanding exponential random graph models , 2011, 1102.2650.

[43]  E. Xing,et al.  Discrete Temporal Models of Social Networks , 2006, SNA@ICML.

[44]  Li Cai,et al.  Consequences of Unmodeled Nonlinear Effects in Multilevel Models , 2009 .

[45]  G. Celeux,et al.  Comparison of the mixture and the classification maximum likelihood in cluster analysis , 1993 .

[46]  Tom A. B. Snijders,et al.  A comparison of various approaches to the exponential random graph model: A reanalysis of 102 student networks in school classes , 2007, Soc. Networks.

[47]  Tom A. B. Snijders,et al.  Introduction to stochastic actor-based models for network dynamics , 2010, Soc. Networks.

[48]  Martina Morris,et al.  statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data. , 2008, Journal of statistical software.

[49]  Michael Wigler,et al.  Rare De Novo Variants Associated with Autism Implicate a Large Functional Network of Genes Involved in Formation and Function of Synapses , 2011, Neuron.

[50]  D. Steinley Properties of the Hubert-Arabie adjusted Rand index. , 2004, Psychological methods.

[51]  Evaluating Individual Differences in Psychological Processes , 2011 .

[52]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[53]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[54]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[55]  W. DeSarbo,et al.  A mixture likelihood approach for generalized linear models , 1995 .

[56]  Daniel J Bauer,et al.  Local solutions in the estimation of growth mixture models. , 2006, Psychological methods.

[57]  Jean-Patrick Baudry,et al.  Estimation and model selection for model-based clustering with the conditional classification likelihood , 2012, 1205.4123.

[58]  G. Celeux,et al.  An entropy criterion for assessing the number of clusters in a mixture model , 1996 .

[59]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[60]  Daniel J Bauer,et al.  Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. , 2003, Psychological methods.