Improvement of electrochemical performance of tin dioxide electrodes through manganese and antimony co-doping

[1]  L. Labiadh,et al.  Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes , 2016 .

[2]  Wei-xiao Ji,et al.  Electronic structure and optical properties of Bi,N co-doped SnO2 , 2015, Journal of Materials Science.

[3]  Kesong Yang,et al.  Electronic structures and formation energies of pentavalent-ion-doped SnO2: First-principles hybrid functional calculations , 2015 .

[4]  Qing Wen,et al.  Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electro-codeposition , 2015 .

[5]  J. Chelikowsky,et al.  A first-principles study of the electronic and structural properties of Sb and F doped SnO2 nanocrystals. , 2015, The Journal of chemical physics.

[6]  E. Morallón,et al.  Pt- and Ru-doped SnO₂-Sb anodes with high stability in alkaline medium. , 2014, ACS applied materials & interfaces.

[7]  G. Ramos-Sánchez,et al.  Oxygen evolution in Co-doped RuO2 and IrO2: Experimental and theoretical insights to diminish electrolysis overpotential , 2014 .

[8]  D. Rosestolato,et al.  On the oxygen evolution reaction at IrO2-SnO2 mixed-oxide electrodes , 2014 .

[9]  James J. Mudd,et al.  Valence-band density of states and surface electron accumulation in epitaxial SnO2 films , 2014 .

[10]  K. Joy,et al.  Magnetic Properties of Mn‐doped SnO2 Thin Films Prepared by the Sol–Gel Dip Coating Method for Dilute Magnetic Semiconductors , 2014 .

[11]  Qing Wen,et al.  Enhancing electrocatalytic performance of Sb-doped SnO ₂ electrode by compositing nitrogen-doped graphene nanosheets. , 2014, Journal of hazardous materials.

[12]  M. Huang,et al.  Facile synthesis of ATO/MnO2 core–shell architectures for electrochemical capacitive energy storage , 2014 .

[13]  R. Kötz,et al.  Pt nanoparticles supported on Sb-doped SnO₂ porous structures: developments and issues. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Wei Yan,et al.  A Highly Stable Ti/TiHx/Sb–SnO2 Anode: Preparation, Characterization and Application , 2014 .

[15]  Walter Z. Tang,et al.  Novel Ti/Ta2O5-SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics , 2014 .

[16]  M. Pacheco,et al.  The Oxygen Evolution Reaction at Sn-Sb Oxide Anodes: Influence of the Oxide Preparation Mode , 2014 .

[17]  P. Biswas,et al.  Synthesis and characterization of nanostructured Mn(II) doped antimony-tin oxide (ATO) films on glass , 2013 .

[18]  P. Biswas,et al.  Synthesis and photoluminescence property of nanostructured sol–gel antimony tin oxide film on silica glass , 2013 .

[19]  M. Rérat,et al.  First principles calculations of magnetic properties of Rh-doped SnO2(1 1 0) surfaces , 2013 .

[20]  Qing‐Yun Chen,et al.  Influence of fluoride-doped tin oxide interlayer on Ni–Sb–SnO2/Ti electrodes , 2013, Journal of Solid State Electrochemistry.

[21]  Xiaoping Dong,et al.  High-efficient treatment of wastewater contained the carcinogen naphthylamine by electrochemical oxidation with γ-Al2O3 supported MnO2 and Sb-doped SnO2 catalyst. , 2012, Journal of hazardous materials.

[22]  J. Niu,et al.  Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. , 2012, Water research.

[23]  A. I. D. Río,et al.  On the behaviour of doped SnO2 anodes stabilized with platinum in the electrochemical degradation of reactive dyes , 2010 .

[24]  Hyunwoong Park,et al.  Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb–SnO2/Ti anodes for water treatment , 2010 .

[25]  Yujie Feng,et al.  Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb–SnO2 electrodes , 2009 .

[26]  Huiling Liu,et al.  Comparative studies on the electrocatalytic properties of modified PbO2 anodes , 2008 .

[27]  Shaoyuan Shi,et al.  Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol. , 2007, Journal of environmental sciences.

[28]  X. Li,et al.  Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode. , 2006, Chemosphere.

[29]  Xiao-yan Li,et al.  Electrolytic Generation of Ozone on Antimony- and Nickel-Doped Tin Oxide Electrode , 2005 .

[30]  J. Vázquez,et al.  Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. 3. XPS and SIMS Characterization , 2004 .

[31]  S. Mho,et al.  Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO2:Sb5+ electrodes , 2004 .

[32]  T. Rantala,et al.  Band structure and optical parameters of the SnO 2 ( 110 ) surface , 2001 .

[33]  B. Delley DMol3 DFT studies: from molecules and molecular environments to surfaces and solids , 2000 .

[34]  Rüdiger Kötz,et al.  Electrochemical waste water treatment using high overvoltage anodes Part II: Anode performance and applications , 1991 .

[35]  D. Gilroy The breakdown of PbO2-Ti anodes , 1982 .