First passages for a search by a swarm of independent random searchers

In this paper we study some aspects of search for an immobile target by a swarm of N non-communicating, randomly moving searchers (numbered by the index k, k = 1, 2,..., N), which all start their random motion simultaneously at the same point in space. For each realization of the search process, we record the unordered set of time moments {?k}, where ?k is the time of the first passage of the kth searcher to the location of the target. Clearly, ?ks are independent, identically distributed random variables with the same distribution function ?(?). We evaluate then the distribution P(?) of the random variable , where is the ensemble-averaged realization-dependent first passage time. We show that P(?) exhibits quite a non-trivial and sometimes a counterintuitive behavior. We demonstrate that in some well-studied cases (e.g. Brownian motion in finite d-dimensional domains) the mean first passage time is not a robust measure of the search efficiency, despite the fact that ?(?) has moments of arbitrary order. This implies, in particular, that even in this simplest case (not to mention complex systems and/or anomalous diffusion) first passage data extracted from a single-particle tracking should be regarded with appropriate caution because of the significant sample-to-sample fluctuations.

[1]  Claude Loverdo,et al.  Chance and strategy in search processes , 2009 .

[2]  Pedro A. Pury,et al.  Intermittent pathways towards a dynamical target. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Iddo Eliazar,et al.  On selfsimilar Lévy Random Probabilities , 2005 .

[4]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.

[5]  Hartmut Löwen,et al.  Chemotactic predator-prey dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  George H. Weiss,et al.  Lattice random walks for sets of random walkers. First passage times , 1980 .

[7]  B. Mandelbrot,et al.  RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON. , 1964, Biophysical journal.

[8]  Alberto Rosso,et al.  Maximum of N independent Brownian walkers till the first exit from the half-space , 2010, 1004.5042.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  D. Grebenkov,et al.  Optimal reaction time for surface-mediated diffusion. , 2010, Physical review letters.

[11]  Moreau,et al.  Stokes formula and density perturbances for driven tracer diffusion in an adsorbed monolayer , 2000, Physical review letters.

[12]  Katja Lindenberg,et al.  Intermittent random walks for an optimal search strategy: one-dimensional case , 2007 .

[13]  Arild Stubhaug Acta Mathematica , 1886, Nature.

[14]  A. Comtet,et al.  On the flux distribution in a one dimensional disordered system , 1994 .

[15]  G. Oshanin,et al.  Models of chemical reactions with participation of polymers , 1994 .

[16]  P. Gennes Chemotaxis: the role of internal delays , 2004, European Biophysics Journal.

[17]  A. Grosberg,et al.  Are DNA transcription factor proteins maxwellian demons? , 2008, Biophysical journal.

[18]  S. Redner,et al.  Capture of the lamb: Diffusing predators seeking a diffusing prey , 1999, cond-mat/9905299.

[19]  A. Berezhkovskii,et al.  Kinetics of escape through a small hole , 2002 .

[20]  I. Grosse,et al.  Sliding blocks with random friction and absorbing random walks , 2000 .

[21]  A. Grosberg,et al.  Primary sequences of proteinlike copolymers: Levy-flight-type long-range correlations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Toru Ohira,et al.  Group chase and escape , 2009, Theoretical Biology.

[23]  H. Larralde,et al.  Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi) , 2003, Behavioral Ecology and Sociobiology.

[24]  Germinal Cocho,et al.  Scale-free foraging by primates emerges from their interaction with a complex environment , 2006, Proceedings of the Royal Society B: Biological Sciences.

[25]  Ignacio Gomez Portillo,et al.  Intermittent random walks: transport regimes and implications on search strategies , 2011 .

[26]  Alfred Pingoud,et al.  Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA , 2008, Nucleic acids research.

[27]  E. Gelenbe Search in unknown random environments. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  G. Oshanin,et al.  Helix or coil? Fate of a melting heteropolymer , 2008, 0807.0949.

[29]  Todd S. Horowitz,et al.  Visual search has no memory , 1998, Nature.

[30]  Massimo Vergassola,et al.  Bacterial strategies for chemotaxis response , 2010, Proceedings of the National Academy of Sciences.

[31]  G. Wuite,et al.  How DNA coiling enhances target localization by proteins , 2008, Proceedings of the National Academy of Sciences.

[32]  Vassili N. Kolokoltsov,et al.  Symmetric Stable Laws and Stable‐Like Jump‐Diffusions , 2000 .

[33]  Gregory A. Kabatiansky,et al.  Finding passwords by random walks: how long does it take? , 2009, ArXiv.

[34]  E. Andersen On the fluctuations of sums of random variables II , 1953 .

[35]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[36]  A. Hansen,et al.  MEASURING HURST EXPONENTS WITH THE FIRST RETURN METHOD , 1994 .

[37]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[38]  P. L. Krapivsky,et al.  Survival of an evasive prey , 2009, Proceedings of the National Academy of Sciences.

[39]  M. Shlesinger,et al.  Beyond Brownian motion , 1996 .

[40]  O Bénichou,et al.  Kinetics of diffusion-limited catalytically activated reactions: an extension of the Wilemski-Fixman approach. , 2005, The Journal of chemical physics.

[41]  Satya N Majumdar,et al.  Diffusion with stochastic resetting. , 2011, Physical review letters.

[42]  H. Wio,et al.  Optimal intermittent search strategies: smelling the prey , 2010 .

[43]  USA,et al.  Efficient search by optimized intermittent random walks , 2009, 0909.1048.

[44]  P. G. de Gennes,et al.  Kinetics of diffusion‐controlled processes in dense polymer systems. I. Nonentangled regimes , 1982 .

[45]  J. Theriot,et al.  Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm , 2010 .

[46]  Paczuski,et al.  Avalanches and 1/f noise in evolution and growth models. , 1994, Physical review letters.

[47]  L. Stone Theory of Optimal Search , 1975 .

[48]  Mathieu Coppey,et al.  Intermittent search strategies: When losing time becomes efficient , 2006 .

[49]  O. Bénichou,et al.  Kinetics of target site localization of a protein on DNA: a stochastic approach. , 2004, Biophysical journal.

[50]  W. J. Bell Searching Behaviour: The Behavioural Ecology of Finding Resources , 1991 .

[51]  Michael J. Ward,et al.  Strong Localized Perturbations of Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[52]  I. Eliazar,et al.  The matchmaking paradox: a statistical explanation , 2010 .

[53]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[54]  R. Metzler,et al.  Facilitated diffusion with DNA coiling , 2009, Proceedings of the National Academy of Sciences.

[55]  Behavior of transport characteristics in several one-dimensional disordered systems , 1993 .

[56]  O Bénichou,et al.  Optimal search strategies for hidden targets. , 2005, Physical review letters.

[57]  B. M. Fulk MATH , 1992 .

[58]  Ralf Metzler,et al.  Leapover lengths and first passage time statistics for Lévy flights. , 2007, Physical review letters.

[59]  J. Klafter,et al.  On the joint residence time of N independent two-dimensional Brownian motions , 2003 .

[60]  Statistical properties of functionals of the paths of a particle diffusing in a one-dimensional random potential. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  J. Kingman,et al.  Random walks with spherical symmetry , 1963 .

[62]  Local and occupation time of a particle diffusing in a random medium. , 2002, Physical review letters.

[63]  D. Kramer,et al.  The Behavioral Ecology of Intermittent Locomotion1 , 2001 .

[64]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[65]  Tamás Vicsek Statistical physics: Closing in on evaders , 2010, Nature.

[66]  O. Bénichou,et al.  Searching fast for a target on DNA without falling to traps. , 2009, Physical review letters.

[67]  Flyvbjerg,et al.  Mean field theory for a simple model of evolution. , 1993, Physical review letters.

[68]  P. Bressloff,et al.  Random intermittent search and the tug-of-war model of motor-driven transport , 2010 .

[69]  Ralf Metzler,et al.  Target search of N sliding proteins on a DNA. , 2005, Biophysical journal.

[70]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[71]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[72]  S B Yuste,et al.  Order statistics for d-dimensional diffusion processes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  G. Molchan Maximum of a Fractional Brownian Motion: Probabilities of Small Values , 1999 .

[74]  G. Schehr,et al.  Two stock options at the races: Black–Scholes forecasts , 2010, 1005.1760.

[75]  Satya N. Majumdar Persistence in nonequilibrium systems , 1999 .

[76]  Sergei F. Burlatsky,et al.  Fluctuation-dominated kinetics of irreversible bimolecular reactions with external random sources on fractals , 1989 .

[77]  Ralf Metzler,et al.  Lévy strategies in intermittent search processes are advantageous , 2008, Proceedings of the National Academy of Sciences.

[78]  G. Oshanin,et al.  Bias- and bath-mediated pairing of particles driven through a quiescent medium , 2010, 1010.2684.

[79]  L. Mirny,et al.  Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. , 2004, Biophysical journal.

[80]  G. Oshanin,et al.  Steady flux in a continuous-space Sinai chain , 1993 .

[81]  Massimo Vergassola,et al.  Chasing information to search in random environments , 2009 .

[82]  Physics Department,et al.  Narrow-escape times for diffusion in microdomains with a particle-surface affinity: mean-field results. , 2010, The Journal of chemical physics.

[83]  I M Sokolov,et al.  Sampling from scale-free networks and the matchmaking paradox. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[85]  M. Moreau,et al.  Enhanced reaction kinetics in biological cells , 2008, 0802.1493.

[86]  H. Wio,et al.  Intermittent search strategies revisited: effect of the jump length and biased motion , 2010 .

[87]  Ding,et al.  Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[88]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[89]  O. Bénichou,et al.  Narrow-escape time problem: time needed for a particle to exit a confining domain through a small window. , 2008, Physical review letters.