Time-resolved X-ray diffraction investigation of the modified phonon dispersion in InSb nanowires.

The modified phonon dispersion is of importance for understanding the origin of the reduced heat conductivity in nanowires. We have measured the phonon dispersion for 50 nm diameter InSb (111) nanowires using time-resolved X-ray diffraction. By comparing the sound speed of the bulk (3880 m/s) and that of a classical thin rod (3600 m/s) to our measurement (2880 m/s), we conclude that the origin of the reduced sound speed and thereby to the reduced heat conductivity is that the C44 elastic constant is reduced by 35% compared to the bulk material.

[1]  B. Borg,et al.  Measurements of light absorption efficiency in InSb nanowires , 2013, Structural dynamics.

[2]  Alexander A. Balandin,et al.  Phononics in low-dimensional materials , 2012 .

[3]  Guohong Yun,et al.  Surface elasticity effect on the size-dependent elastic property of nanowires , 2012 .

[4]  H. Xu,et al.  Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning. , 2012, Nano letters.

[5]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[6]  Philippe Caroff,et al.  Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases , 2011 .

[7]  Y. Mai,et al.  Super Deformability and Young’s Modulus of GaAs Nanowires , 2011, Advanced materials.

[8]  O. Ambacher,et al.  Elastic properties of nanowires , 2010 .

[9]  M. Nielsen,et al.  Direct observation of acoustic oscillations in InAs nanowires. , 2010, Nano letters.

[10]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[11]  L. Wernersson,et al.  InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch , 2009, Nanotechnology.

[12]  Wei Lu,et al.  Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. , 2009, Nano letters.

[13]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[14]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[15]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[16]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[17]  N. Mingo Erratum: “Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires” [Appl. Phys. Lett. 84, 2652 (2004)] , 2006 .

[18]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[19]  C. Caleman,et al.  Studies of resolidification of non-thermally molten InSb using time-resolved X-ray diffraction , 2005 .

[20]  J. Wark,et al.  Picosecond x-ray studies of coherent folded acoustic phonons in a multiple quantum well. , 2005, Physical review letters.

[21]  N. Mingo,et al.  Lattice thermal conductivity crossovers in semiconductor nanowires. , 2004, Physical review letters.

[22]  D. S. Kim,et al.  Coherent Atomic Motions in a Nanostructure Studied by Femtosecond X-ray Diffraction , 2004, Science.

[23]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[24]  Paul Mulvaney,et al.  Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. , 2003, Journal of the American Chemical Society.

[25]  M. Esashi,et al.  Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus , 2003 .

[26]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[27]  P. Bucksbaum,et al.  Picosecond X-ray diffraction studies of laser-excited acoustic phonons in InSb , 2002 .

[28]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[29]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[30]  Johnson,et al.  Time-resolved X-Ray diffraction from coherent phonons during a laser-induced phase transition , 2000, Physical review letters.

[31]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[32]  Sadao Adachi,et al.  Gaas And Related Materials , 1994 .

[33]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[34]  Thomsen,et al.  Surface generation and detection of phonons by picosecond light pulses. , 1986, Physical review. B, Condensed matter.

[35]  Michael F. Ashby,et al.  Nanomaterials, Nanotechnologies and Design : An Introduction for Engineers and Architects , 2009 .

[36]  L. Slutsky,et al.  Elastic Constants of Indium Antimonide from 4.2°K to 300°K , 1959 .