Symmetry Classification of First Integrals for Scalar Linearizable Second-Order ODEs
暂无分享,去创建一个
[1] Fazal M. Mahomed,et al. Symmetry Lie algebras of nth order ordinary differential equations , 1990 .
[2] A. Kara,et al. A Basis of Conservation Laws for Partial Differential Equations , 2002 .
[3] S. Lie,et al. Classification und Integration von gewhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten: Die nachstehende Arbeit erschien zum ersten Male im Frhling 1883 im norwegischen Archiv , 1888 .
[4] Fazal M. Mahomed,et al. Lie and Noether Counting Theorems for One-Dimensional Systems , 1993 .
[5] Fazal M. Mahomed,et al. Lie algebras associated with scalar second-order ordinary differential equations , 1989 .
[6] Fazal M. Mahomed,et al. Symmetry group classification of ordinary differential equations: Survey of some results , 2007 .
[7] K. Govinder,et al. The Algebraic Structure of the First Integrals of Third-Order Linear Equations , 1995 .
[8] P. Winternitz,et al. Ordinary di ff erential and di ff erence equations invariant under SL ( 2 , R ) and their solutions , 2009 .
[9] F. Mahomed,et al. Maximal subalgebra associated with a first integral of a system possessing sl(3,R) algebra , 1988 .
[10] S. Lie. Classification und Integration von gewöhnlichen Differentialgleichungen zwischenxy, die eine Gruppe von Transformationen gestatten , 1888 .
[11] Ar. Tresse,et al. Sur les invariants différentiels des groupes continus de transformations , 1894 .
[12] F. Mahomed,et al. THE LIE ALGEBRA sl(3, R) AND LINEARIZATION , 1989 .
[13] F. Mahomed,et al. THE LINEAR SYMTRIES OF A NONLINEAR DIFFERENTIAL EQUATION , 1985 .
[14] P. Hartman. Ordinary Differential Equations , 1965 .