Noncertainty-Equivalent Adaptive Missile Control via Immersion and Invariance

[Abstract] This paper presents a noncertainty-equivalent new adaptive control (NCEA) system for the control of missile based on immersion and invariance approach. The mathematical model of the missile represents the nonlinear longitudinal dynamics, and it is assumed that all the aerodynamic parameters (except the sign of a single control input gain) are not known. Although, other choices of controlled output variables, which are nonlinear functions of state variables are possible, in this paper control of angle of attack is considered. A nonlinear adaptive autopilot for the trajectory control of the angle of attack is derived. The autopilot has a modular structure, which consists of a stabilizer and a parameter estimator. In the closed-loop system, it is seen that the trajectory is conflned to a manifold in the space of missile states and estimated parameters. A special feature of the designed autopilot (unlike the traditional certainty-equivalent (CEA) adaptive systems) is that, whenever the estimated parameters attain their true values, they remain frozen thereafter, and the autopilot recovers performance of deterministic control system. Simulation results are presented which show that the designed autopilot accomplishes trajectory control of the angle of attack despite uncertainties in the system parameters.

[1]  J.R. Cloutier,et al.  Assessment of air-to-air missile guidance and control technology , 1988, IEEE Control Systems Magazine.

[2]  Alessandro Astolfi,et al.  Nonlinear adaptive control of systems in feedback form: An alternative to adaptive backstepping , 2004, Syst. Control. Lett..

[3]  James R. Cloutier,et al.  Nonlinear, Hybrid Bank-to-Turn/Skid-to-Turn Missile Autopilot Design , 2001 .

[4]  Bernard Friedland,et al.  Modern Control Theory for Design of Autopilots for Bank-to-Turn Missiles , 1986, 1986 American Control Conference.

[5]  Ming Xin,et al.  Nonlinear Missile Autopilot Design with theta - D Technique , 2004 .

[6]  E. J. Ohlmeyer,et al.  Integrated Design of Agile Missile Guidance and Autopilot Systems , 2001 .

[7]  Sahjendra N. Singh,et al.  I-O map inversion, zero dynamics and flight control , 1990 .

[8]  Mario Innocenti,et al.  A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering , 1998, IEEE Trans. Control. Syst. Technol..

[9]  Ernest J. Ohlmeyer,et al.  Software Tools for Nonlinear Missile Autopilot Design , 1999 .

[10]  Ming Xin,et al.  Missile longitudinal autopilot design using a new suboptimal nonlinear control method , 2003 .

[11]  Spilios Theodoulis,et al.  Missile Autopilot Design: Gain-Scheduling and the Gap Metric , 2007 .

[12]  Stephen P. Banks,et al.  Sliding Mode Control with Optimal Sliding Surfaces for Missile Autopilot Design , 2000 .

[13]  Pramod P. Khargonekar,et al.  Stability Analysis of a Missile Control System with a Dynamic Inversion Controller , 1998 .

[14]  J. H. Evers,et al.  Assessment of air-to-air missile guidance and control technology , 1989 .

[15]  Alessandro Astolfi,et al.  Nonlinear and adaptive control with applications , 2008 .

[16]  Debasish Ghose,et al.  Variable Structure Controller Design with Application to Missile Tracking , 2001 .

[17]  Chih-Min Lin,et al.  Improving Conventional Longitudinal Missile Autopilot Using Cerebellar Model Articulation Controller Neural Networks , 2003 .

[18]  Ching-Fang Lin,et al.  Advanced Control Systems Design , 1993 .

[19]  Gunter Stein,et al.  A General Adaptive Control Structure with a Missile Application , 1988, 1988 American Control Conference.

[20]  Naira Hovakimyan,et al.  L1 Adaptive Output-Feedback Controller for Non-Strictly-Positive-Real Reference Systems: Missile Longitudinal Autopilot Design , 2009 .

[21]  Song Chong,et al.  Design of a CLOS guidance law via feedback linearization , 1992 .

[22]  J. R. Cloutier,et al.  Full Envelope Missile Longitudinal Autopilot Design Using the State-Dependent Riccati Equation Method , 1994 .

[23]  Jeff S. Shamma,et al.  Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations , 1993 .

[24]  Alessandro Astolfi,et al.  Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[25]  Maruthi R. Akella,et al.  High-Performance Spacecraft Adaptive Attitude-Tracking Control Through Attracting-Manifold Design , 2008 .

[26]  E.W. Kamen,et al.  Adaptive Control Applied to Missile Autopilots , 1988, 1988 American Control Conference.

[27]  Moshe Idan,et al.  Sliding-Mode Control for Integrated Missile Autopilot Guidance , 2004 .

[28]  Li-Chen Fu,et al.  Adaptive Robust Bank-to-Turn Missile Autopilot Design Using Neural Networks , 1997 .

[29]  Keum W. Lee,et al.  Immersion- and Invariance-Based Adaptive Control of a Nonlinear Aeroelastic System , 2009 .

[30]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .