Phase-dependent deterministic switching of magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization

The possibility of achieving phase-dependent deterministic switching of the magnetoelectric spin wave detector in the presence of thermal noise has been discussed. The proposed idea relies on the modification of the energy landscape by partially canceling the out-of-plane demagnetizing field and the resultant change in the intrinsic magnetization dynamics to drive the nanomagnet towards a preferential final magnetization state. The remarkable increase in the probability of successful switching can be accounted for by the shift in the location of the saddle point in the energy landscape and a resultant change in the nature of the relaxation dynamics of the magnetization from a highly precessional to a fairly damped one and an increased dependence on the initial magnetization values, a crucial requirement for phase-dependent spin wave detection.

[1]  D. Ralph,et al.  Reduction of the spin-torque critical current by partially canceling the free layer demagnetization field , 2009 .

[2]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[3]  Azad Naeemi,et al.  Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines , 2015, Scientific Reports.

[4]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[5]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.

[6]  Johan Åkerman,et al.  [Co/Pd]–NiFe exchange springs with tunable magnetization tilt angle , 2011 .

[7]  W. Brown Thermal Fluctuations of a Single‐Domain Particle , 1963 .

[8]  C. Nan,et al.  Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures , 2009 .

[9]  Csaba Andras Moritz,et al.  Spin wave nanofabric update , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[10]  Kelly,et al.  Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. , 1992, Physical review letters.

[11]  Azad Naeemi,et al.  SPICE Circuit Modeling of PMA Spin Wave Bus Excited Using Magnetoelectric Effect , 2014, IEEE Transactions on Magnetics.

[12]  M. Graef,et al.  The equivalent ellipsoid of a magnetized body , 2006 .

[13]  Dmitri E. Nikonov,et al.  Modeling and Design of Spintronic Integrated Circuits , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Sachin S. Sapatnekar,et al.  Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor , 2015, Proceedings of the IEEE.

[15]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[16]  Isaak D. Mayergoyz,et al.  Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics , 2006 .

[17]  Supriyo Bandyopadhyay,et al.  Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress , 2011, 1103.0352.

[18]  Csaba Andras Moritz,et al.  Spin wave functions nanofabric update , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[19]  Spin-torque oscillators with thermal noise: A constant energy orbit approach , 2014, 1405.0731.

[20]  Kang L. Wang,et al.  Electric-field-induced spin wave generation using multiferroic magnetoelectric cells , 2014 .

[21]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[22]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.