Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES–derived thermal inertia

[1] The Miniature Thermal Emission Spectrometer (Mini-TES) on board the two Mars Exploration Rovers provides the first opportunity to observe thermal properties from the Martian surface, relate these properties to orbital data, and perform soil conductivity experiments under Martian conditions. The thermal inertias of soils, bedforms, and rock at each landing site were derived to quantify the physical properties of these features and understand geologic processes occurring at these localities. The thermal inertia for the Gusev plains rock target Bonneville Beacon (∼1200 J m−2 K−1 s−1/2) is consistent with a dense, basaltic rock, but the rocks at the Columbia Hills have a lower thermal inertia (∼620 J m−2 K−1 s−1/2), suggesting that they have a volcaniclasic origin. Bedforms on the floors of craters at both landing sites have thermal inertias of 200 J m−2 K−1 s−1/2, consistent with a particle diameter of ∼160 μm. This diameter is comparable to the most easily moved grain size in the current atmosphere on Mars, suggesting that these bedforms may have formed under current atmospheric conditions. Along the Meridiani plains, the thermal inertia is lower than that derived from TES and Thermal Emission Imaging System (THEMIS) orbital data. This discrepancy is not well understood. Mini-TES–derived thermal inertias at Gusev along a ∼2.5 km traverse follow trends in thermal inertia measured from orbit with TES and THEMIS. However, along the traverse, there are variability and mixing of particle sizes that are not resolved in the orbital thermal inertia data due to meter-scale processes that are not identifiable at larger scales.

[1]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[2]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[3]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[4]  Bruce M. Jakosky,et al.  The planet Mars - From antiquity to the present , 1992 .

[5]  R. Arvidson,et al.  Radiative Transfer Photometric Analyses at the Mars Exploration Rover Landing Sites , 2005 .

[6]  S. Ruff,et al.  Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water , 2004 .

[7]  K. Herkenhoff,et al.  Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site , 2005 .

[8]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[9]  P. Christensen,et al.  Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .

[10]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[11]  B. Jakosky On the thermal properties of Martian fines , 1986 .

[12]  Directional variations in thermal emission from geologic surfaces , 1990 .

[13]  Duccio Rocchini,et al.  Theory of Reflectance and Emittance Spectroscopy , 2008 .

[14]  M. Presley,et al.  The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures , 1997 .

[15]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[16]  K. Herkenhoff,et al.  Sulfate deposition in subsurface regolith in Gusev crater, Mars , 2006 .

[17]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[18]  J. Zimbelman The role of porosity in thermal inertia variations on basaltic lavas , 1986 .

[19]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[20]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[21]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[22]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[23]  Raymond E. Arvidson,et al.  The size‐frequency and areal distribution of rock clasts at the Spirit landing site, Gusev Crater, Mars , 2005 .

[24]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.

[25]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[26]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[27]  E. C. Robertson,et al.  Thermal conductivity of vesicular basalt from Hawaii , 1974 .

[28]  P H Smith,et al.  Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.

[29]  J F Bell,et al.  Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.

[30]  J. Bandfield,et al.  Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets , 2003 .

[31]  D. Ming,et al.  Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site , 2005, Nature.

[32]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[33]  Ronald Greeley,et al.  Wind tunnel studies of Martian aeolian processes , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  B. Jakosky,et al.  Directional Variations In Thermal Emission From Geologic Surfaces , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[35]  B. White,et al.  Saltation threshold on Mars - The effect of interparticle force, surface roughness, and low atmospheric density. [from wind-tunnel experiments] , 1976 .

[36]  A. F. C. Haldemann,et al.  Assessment of Mars Exploration Rover landing site predictions , 2005, Nature.

[37]  K. Edgett,et al.  Mars aeolian sand: Regional variations among dark-hued crater floor features , 1994 .

[38]  R J Sullivan,et al.  Wind-Related Processes Detected by the Spirit Rover at Gusev Crater, Mars , 2004, Science.

[39]  P. Christensen Eolian intracrater deposits on Mars: Physical properties and global distribution , 1983 .

[40]  R. Fergason,et al.  Thermal inertia using THEMIS infrared data , 2003 .

[41]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[42]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[43]  Philip R. Christensen,et al.  The spatial distribution of rocks on mars , 1986 .

[44]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[45]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[46]  David E. Smith,et al.  The relationship between MOLA northern hemisphere topography and the 6.1‐Mbar atmospheric pressure surface of Mars , 1998 .

[47]  M. Mellon,et al.  The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[48]  E. West,et al.  Thermal conductivity of particulate basalt as a function of density in simulated lunar and Martian environments , 1970 .

[49]  Ronald Greeley,et al.  Threshold windspeeds for sand on Mars: Wind tunnel simulations , 1980 .

[50]  William H. Farrand,et al.  The Spirit Rover9s Athena Science Investigation at Gusev Crater, Mars , 2004 .

[51]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[52]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[53]  R. Haberle,et al.  Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo , 1995 .

[54]  Nathalie A. Cabrol,et al.  Gusev crater: Wind‐related features and processes observed by the Mars Exploration Rover Spirit , 2006 .

[55]  R. J. Reid,et al.  Imager for Mars Pathfinder (IMP) image calibration , 1999 .

[56]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[57]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[58]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[59]  P. Glaser,et al.  Thermal properties of granulated materials. , 1972 .

[60]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[61]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[62]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[63]  W. Hartmann,et al.  Utilization of the THEMIS visible and infrared imaging data for crater population studies of the Meridiani Planum landing site , 2003 .

[64]  G. Neugebauer,et al.  Mariner 1969 infrared radiometer results - Temperatures and thermal properties of the Martian surface , 1971 .

[65]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[66]  D. Rogers,et al.  Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere , 2003 .

[67]  P. Glaser,et al.  Pressure Effects on Postulated Lunar Materials , 1965 .

[68]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[69]  R. Haberle,et al.  Atmospheric effects on the remote determination of thermal inertia on mars , 1991 .

[70]  K. Edgett,et al.  THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .

[71]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[72]  B. Jakosky The effects of nonideal surfaces on the derived thermal properties of Mars , 1979 .