Singularity treatment and high‐order RWG basis functions for integral equations of electromagnetic scattering

We present numerical implementation of high order RWG basis functions for electromagnetic scattering for curved conductor surfaces with a procedure for treating the singularities of dyadic Green's functions in the mixed potential formulation of electromagnetic scattering. Copyright © 2001 John Wiley & Sons, Ltd.

[1]  A. Sommerfeld Partial Differential Equations in Physics , 1949 .

[2]  Wei Cai High-Order Mixed Current Basis Functions for Electromagnetic Scattering of Curved Surfaces , 1999, J. Sci. Comput..

[3]  Jean-Claude Nédélec,et al.  Computation of Eddy Currents on a Surface in $R^3$ by Finite Element Methods , 1978 .

[4]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[5]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[6]  K. J. Glover,et al.  Electromagnetic Computation Using Parametric Geometry , 1990 .

[7]  B. D. Popović,et al.  Analysis of metallic antennas and scatterers , 1994 .

[8]  D. Wilton,et al.  Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains , 1984 .

[9]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[10]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[11]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[12]  D.L. Wilkes,et al.  Method of moments solution with parametric curved triangular patches , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[13]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[14]  R. Harrington Characteristic modes for antennas and scatterers , 1975 .

[15]  R. Kieser The triangle-to-square transformation for finite-part integrals , 1992 .

[16]  J. Mosig Integral equation Technique , 1989 .

[17]  Wei Cai,et al.  High-order mixed RWG basis functions for electromagnetic applications , 2001 .

[18]  Stephen M. Wandzura,et al.  Electric Current Basis Functions for Curved Surfaces , 1992 .

[19]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[20]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[21]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[22]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[23]  J. Volakis,et al.  Approximate boundary conditions in electromagnetics , 1995 .

[24]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[25]  J. P. Webb Edge Elements and What They Can Do for You , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[26]  John L. Volakis,et al.  Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics , 1999 .

[27]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[28]  Weng Cho Chew,et al.  Moment method solutions using parametric geometry , 1995 .