Assessment of inflow boundary conditions for compressible turbulent boundary layers

A description of different inflow methodologies for turbulent boundary layers, including validity and limitations, is presented. We show that the use of genuine periodic boundary conditions, in which no alteration of the governing equations is made, results in growing mean flow and decaying turbulence. Premises under which the usage is valid are presented and explained, and comparisons with the extended temporal approach [T. Maeder, N. A. Adams, and L. Kleiser, “Direct simulation of turbulent supersonic boundary layers by an extended temporal approach,” J. Fluid Mech. 429, 187 (2001)] are used to assess the validity. Extending the work by Lund et al. [J. Comput. Phys. 140, 233 (1998)], we propose an inflow generation method for spatial simulations of compressible turbulent boundary layers. The method generates inflow by reintroducing a rescaled downstream flow field to the inlet of a computational domain. The rescaling is based on Morkovin’s hypothesis [P. Bradshaw, “Compressible turbulent shear layers,” ...

[1]  C. Lin,et al.  On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes equation , 1953 .

[2]  Alexander J. Smits,et al.  Turbulent Shear Layers in Supersonic Flow , 1996 .

[3]  Hermann F. Fasel,et al.  Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations , 1990, Journal of Fluid Mechanics.

[4]  Craig L. Streett,et al.  Spectral multi-domain for large-scale fluid dynamic simulations , 1989 .

[5]  P. Moin,et al.  Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow , 1992 .

[6]  T. Lund,et al.  Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations , 1998 .

[7]  E. Hopkins,et al.  An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers , 1971 .

[8]  A. Sadiki,et al.  A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations , 2003 .

[9]  Robert D. Moser,et al.  Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5 , 2000, Journal of Fluid Mechanics.

[10]  Neil D. Sandham,et al.  Direct Numerical Simulation of Turbulent Flow over a Rectangular Trailing Edge , 2001 .

[11]  Leonhard Kleiser,et al.  Numerical simulation of transition in wall-bounded shear flows , 1991 .

[12]  N. Adams,et al.  Direct simulation of turbulent supersonic boundary layers by an extended temporal approach , 2001, Journal of Fluid Mechanics.

[13]  D. Coles,et al.  The Turbulent Boundary Layer in a Compressible Fluid , 1964 .

[14]  N. Adams,et al.  A comparison study of an improved temporal DNS and spatial DNS of compressible boundary layer transition , 1994 .

[15]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[16]  Kiran Bhaganagar,et al.  Direct Numerical Simulation of Spatial Transition to Turbulence Using Fourth-Order Vertical Velocity Second-Order Vertical Vorticity Formulation , 2002 .

[17]  Miguel R. Visbal,et al.  Large-Eddy Simulation of Supersonic Compression-Ramp Flow by High-Order Method , 2001 .

[18]  Chau-Lyan Chang,et al.  Direct Numerical Simulation of Hypersonic Boundary-Layer Flow on a Flared Cone , 1998 .

[19]  P. Spalart Direct simulation of a turbulent boundary layer up to Rθ = 1410 , 1988, Journal of Fluid Mechanics.

[20]  P. Moin,et al.  Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer , 1991 .

[21]  Kyung-Soo Yang,et al.  Numerical study of ribbon-induced transition in Blasius flow , 1987, Journal of Fluid Mechanics.

[22]  Nikolaus A. Adams,et al.  Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685 , 2000, Journal of Fluid Mechanics.

[23]  Nikolaus A. Adams,et al.  Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique , 2003 .

[24]  Nikolaus A. Adams,et al.  Comparison of temporal and spatial direct numerical simulation of compressible boundary-layer transition , 1996 .

[25]  H. H. Fernholz,et al.  The incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data , 1996 .

[26]  J. Gaviglio,et al.  Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer , 1987 .

[27]  Nikolaus A. Adams,et al.  Direct Numerical Simulation of Turbulent Compression Ramp Flow , 1998 .

[28]  Miguel R. Visbal,et al.  Application of Large-Eddy Simulation to Supersonic Compression Ramps , 2002 .

[29]  M. Lesieur,et al.  Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate , 1996, Journal of Fluid Mechanics.

[30]  N. A Adams,et al.  Numerical Simulation of Transition in a Compressible Flat Plate Boundary Layer , 1993 .

[31]  Graham V. Candler,et al.  Temperature fluctuation scaling in reacting boundary layers , 2001 .

[32]  Elias Balaras,et al.  Inflow conditions for large-eddy simulations of mixing layers , 1999 .

[33]  Peter Bradshaw,et al.  Compressible Turbulent Shear Layers , 1977 .

[34]  Philippe R. Spalart,et al.  Experimental and numerical study of a turbulent boundary layer with pressure gradients , 1993, Journal of Fluid Mechanics.

[35]  Doyle Knight,et al.  Large-Eddy Simulation of a Supersonic Boundary Layer Using an Unstructured Grid , 2001 .