Single GaN-Based Nanowires for Photodetection and Sensing Applications

We present a study of the structural properties of GaN/AlN heterostructured nanowires grown by plasma-assisted molecular-beam epitaxy. We combine transmission electron microscopy measurements with theoretical calculations of the strain distribution and band diagram in order to gain understanding of the potential distribution in these nanostructures. The effects of surface states and of the formation of a core–shell heterostructure are discussed. The structural properties are correlated with the performance of GaN-based nanowire photodetectors and sensors. In particular, we discuss a sensor design where the insertion of an AlN barrier in a GaN nanowire is proposed as a material engineering solution to inhibit the electron transport through the core, confining the current close to the nanowire sidewalls.

[1]  F. Julien,et al.  Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. , 2010, Nano letters.

[2]  K. Sun,et al.  Correlated Structural, Electronic, and Optical Properties of AlN/GaN Multiple Quantum Disks in GaN Nanowires , 2012 .

[3]  M. Yoshizawa,et al.  Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks , 1998 .

[4]  D. Gerthsen,et al.  Determination of the mean inner potential in III-V semiconductors, Si and Ge by density functional theory and electron holography. , 2006, Ultramicroscopy.

[5]  Esther Baumann,et al.  GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance , 2008 .

[6]  Steven M. George,et al.  Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy , 2010 .

[7]  Chun-Yang Lu,et al.  Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires , 2009 .

[8]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[9]  M. Eickhoff,et al.  GaN nanodiscs embedded in nanowires as optochemical transducers , 2011, Nanotechnology.

[10]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[11]  Environmental sensitivity of n-i-n and undoped single GaN nanowire photodetectors , 2012, 1212.1591.

[12]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[13]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[14]  M. Stutzmann,et al.  Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy , 2008 .

[15]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[16]  J. Ristić,et al.  Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology , 2011 .

[17]  Chia-Chun Chen,et al.  On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. , 2008, Small.

[18]  J. Arbiol,et al.  Carrier confinement in GaN/Al x Ga 1-x N nanowire heterostructures (0 , 2011, 1109.3394.

[19]  Rainer G. Ulbrich,et al.  Atomic and electronic structure of the nonpolar GaN ( 1 1 ¯ 00 ) surface , 2009 .

[20]  H. Riel,et al.  Mapping active dopants in single silicon nanowires using off-axis electron holography. , 2009, Nano letters.

[21]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[22]  E. Monroy,et al.  Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors. , 2012, Nano letters.

[23]  M. Mills,et al.  Three-dimensional GaN/AlN nanowire heterostructures by separating nucleation and growth processes. , 2011, Nano letters.

[24]  D. Kalita,et al.  Strong suppression of internal electric field in GaN/AlGaN multi-layer quantum dots in nanowires , 2011 .

[25]  R Meijers,et al.  Investigation on localized states in GaN nanowires. , 2008, ACS nano.

[26]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[27]  M. Eickhoff,et al.  Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. , 2012, Nano letters.

[28]  R. Beresford,et al.  The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1) , 1998 .

[29]  H. Lüth,et al.  Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. , 2007, Nano letters.

[30]  E. Monroy,et al.  Identification of III–N nanowire growth kinetics via a marker technique , 2010, Nanotechnology.

[31]  B. Daudin,et al.  From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[32]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[33]  Jelena Ristic,et al.  Carrier-confinement effects in nanocolumnar GaN/AlxGa1-xN quantum disks grown by molecular-beam epitaxy , 2005 .

[34]  Kuei-Hsien Chen,et al.  Ultrahigh photocurrent gain in m-axial GaN nanowires , 2007 .

[35]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[36]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .