A robust Nitsche’s formulation for interface problems
暂无分享,去创建一个
John E. Dolbow | Martin Hautefeuille | Chandrasekhar Annavarapu | J. Dolbow | C. Annavarapu | M. Hautefeuille | Chandrasekhar Annavarapu
[1] Nicolas Moës,et al. A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .
[2] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[3] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[4] John E. Dolbow,et al. Residual-free bubbles for embedded Dirichlet problems , 2008 .
[5] Tod A. Laursen,et al. Mortar contact formulations for deformable–deformable contact: Past contributions and new extensions for enriched and embedded interface formulations , 2012 .
[6] Erik Burman,et al. A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..
[7] Angelo Simone,et al. Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .
[8] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[9] Shun Zhang,et al. Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations , 2011, SIAM J. Numer. Anal..
[10] J. Dolbow,et al. Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .
[11] Helio J. C. Barbosa,et al. The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .
[12] Paolo Zunino,et al. An unfitted interface penalty method for the numerical approximation of contrast problems , 2011 .
[13] Paolo Zunino. Discontinuous Galerkin Methods Based on Weighted Interior Penalties for Second Order PDEs with Non-smooth Coefficients , 2009, J. Sci. Comput..
[14] Adrian J. Lew,et al. Optimal convergence of a discontinuous-Galerkin-based immersed boundary method* , 2011 .
[15] John E. Dolbow,et al. Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .
[16] Tod A. Laursen,et al. On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .
[17] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[18] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .
[19] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[20] A. Ern,et al. A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity , 2008 .
[21] Tod A. Laursen,et al. A Nitsche embedded mesh method , 2012 .
[22] Michael Griebel,et al. A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .
[23] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[24] Rolf Stenberg,et al. Nitsche's method for general boundary conditions , 2009, Math. Comput..
[25] John E. Dolbow,et al. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .
[26] Isaac Harari,et al. An efficient finite element method for embedded interface problems , 2009 .
[27] J. Dolbow,et al. Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .
[28] Isaac Harari,et al. A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces , 2007 .
[29] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[30] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .