Lag-luminosity relation in γ-ray burst X-ray flares: A direct link to the prompt emission

The temporal and spectral analysis of 9 bright X-ray flares out of a sample of 113 flares observed by Swift reveals that the flare phenomenology is strictly analogous to the prompt γ-ray emission: high energy flare profiles rise faster, decay faster and peak before the low energy emission. However, flares and prompt pulses differ in one crucial aspect: flares evolve with time. As time proceeds flares become wider, with larger peak lag, lower luminosities and softer emission. The flare spectral peak energy Ep,i evolves to lower values following an exponential decay which tracks the decay of the flare flux. The two flares with best statistics show higher than expected isotropic energy Eiso and peak luminosity Lp,iso when compared to the Ep,i Eiso and Ep,i Liso prompt correlations. Ep,i is found to correlate with Liso within single flares, giving rise to a time resolved Ep,i(t) Liso(t). Like prompt pulses, flares define a lag-luminosity relation: L 0.3 10keV p,iso / t 0.95±0.23 lag . The lag-luminosity is proven to be a fundamental law extending �5 decades in time and �5 in energy. Moreover, this is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism. Finally we establish a flare- afterglow morphology connection: flares are preferentially detected superimposed to one-break or canonical X-ray afterglows.

[1]  O. Siegmund UV, X-ray, and gamma-ray space instrumentation for astronomy XVII : 21-24 August 2011, San Diego, California, United States , 2011 .

[2]  T. Sakamoto,et al.  SPECTRAL LAGS AND THE LAG–LUMINOSITY RELATION: AN INVESTIGATION WITH SWIFT BAT GAMMA-RAY BURSTS , 2009, 0908.2370.

[3]  P. O’Brien,et al.  The spectral-temporal properties of the prompt pulses and rapid decay phase of GRBs , 2009, 0912.1759.

[4]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[5]  T. Sakamoto,et al.  GRB 081028 and its late-time afterglow re-brightening , 2009, 0910.3166.

[6]  J. Hakkila,et al.  TESTING THE GAMMA-RAY BURST PULSE START CONJECTURE , 2009, 0909.0755.

[7]  G. Ghirlanda,et al.  Spectral-luminosity relation within individual Fermi gamma rays bursts , 2009, 0908.2807.

[8]  T. Sakamoto,et al.  TESTING THE Epeak–Eiso RELATION FOR GRBs DETECTED BY SWIFT AND SUZAKU-WAM , 2009, 0908.1335.

[9]  P. Giommi,et al.  GRB 090423 at a redshift of z ≈ 8.1 , 2009, Nature.

[10]  Leiming Fang,et al.  THE Ep EVOLUTIONARY SLOPE WITHIN THE DECAY PHASE OF “FAST RISE AND EXPONENTIAL DECAY” GAMMA-RAY BURST PULSES , 2009, 0903.3457.

[11]  Bing Zhang,et al.  A COMPREHENSIVE ANALYSIS OF SWIFT/X-RAY TELESCOPE DATA. IV. SINGLE POWER-LAW DECAYING LIGHT CURVES VERSUS CANONICAL LIGHT CURVES AND IMPLICATIONS FOR A UNIFIED ORIGIN OF X-RAYS , 2009, 0902.3504.

[12]  K. Ioka,et al.  Time-Evolution of Peak Energy and Luminosity Relation within Pulses for GRB 061007: Probing Fireball Dynamics , 2008, 0812.3737.

[13]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[14]  G. Sala,et al.  A STRONG OPTICAL FLARE BEFORE THE RISING AFTERGLOW OF GRB 080129 , 2008, 0811.4291.

[15]  G. Ghisellini,et al.  Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux , 2008, 0807.4931.

[16]  J. Kero,et al.  Orbit characteristics of the tristatic EISCAT UHF meteors , 2008 .

[17]  C. Guidorzi,et al.  Measuring the cosmological parameters with the Ep,i–Eiso correlation of gamma-ray bursts , 2008, 0805.0377.

[18]  Jon Hakkila,et al.  Correlations between Lag, Luminosity, and Duration in Gamma-Ray Burst Pulses , 2008, 0803.1655.

[19]  L. Piro,et al.  Early emission of rising optical afterglows: The case of GRB 060904B and GRB 070420 , 2008 .

[20]  P. T. O'Brien,et al.  On the nature of late X-ray flares in Swift gamma-ray bursts , 2008, 0802.3803.

[21]  R. Margutti,et al.  When GRB afterglows get softer, hard components come into play , 2007, 0711.3739.

[22]  R. Margutti,et al.  Anomalous X-ray emission in GRB 060904B: A Nickel line? , 2007, 0712.1412.

[23]  Oswald H. W. Siegmund,et al.  UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII , 2007 .

[24]  D. N. Burrows,et al.  The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Spectral Properties and Energetics , 2007, 0706.1564.

[25]  D. N. Burrows,et al.  GRB 060714: No Clear Dividing Line between Prompt Emission and X-Ray Flares , 2007, astro-ph/0702603.

[26]  N. Gehrels,et al.  The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Temporal Properties and Morphology , 2007, astro-ph/0702371.

[27]  A. Falcone,et al.  GRB 050822: detailed analysis of an XRF observed by Swift , 2007, astro-ph/0702262.

[28]  F. Frontera,et al.  On the temporal variability classes found in long gamma-ray bursts with known redshift , 2007, astro-ph/0701920.

[29]  T. Sakamoto,et al.  A new γ-ray burst classification scheme from GRB 060614 , 2006, Nature.

[30]  J. P. Osborne,et al.  Swift multi-wavelength observations of the bright flaring burst GRB 051117A , 2006, astro-ph/0612661.

[31]  Bradley E. Schaefer,et al.  The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts , 2006, astro-ph/0612285.

[32]  P. Giommi,et al.  Panchromatic study of GRB 060124: From precursor to afterglow , 2006, astro-ph/0602497.

[33]  P. Giommi,et al.  X-ray flare in XRF 050406: evidence for prolonged engine activity , 2006, astro-ph/0601173.

[34]  Yuki Kaneko,et al.  The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts , 2006, astro-ph/0601188.

[35]  N. Gehrels,et al.  The Giant X-Ray Flare of GRB 050502B: Evidence for Late-Time Internal Engine Activity , 2005, astro-ph/0512615.

[36]  P. Giommi,et al.  An origin for short γ-ray bursts unassociated with current star formation , 2005, Nature.

[37]  N. Gehrels,et al.  Swift Observations of the X-Ray-Bright GRB 050315 , 2005, astro-ph/0510677.

[38]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[39]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[40]  J. Scargle,et al.  Long-Lag, Wide-Pulse Gamma-Ray Bursts , 2005, astro-ph/0503383.

[41]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[42]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[43]  D. Yonetoku,et al.  Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation , 2003, astro-ph/0309217.

[44]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[45]  D. Kocevski,et al.  The Connection between Spectral Evolution and Gamma-Ray Burst Lag , 2002, astro-ph/0207052.

[46]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.

[47]  R. Nemiroff The Pulse Scale Conjecture and the Case of BATSE Trigger 2193 , 2000, astro-ph/0001345.

[48]  E. Ramirez-Ruiz,et al.  Pulse Width Evolution in Gamma-Ray Bursts: Evidence for Internal Shocks , 1999, astro-ph/9910273.

[49]  J. P. Norris,et al.  Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts , 1999, astro-ph/9903233.

[50]  Gerald J. Fishman,et al.  Attributes of Pulses in Long Bright Gamma-Ray Bursts , 1996 .

[51]  E. Fenimore,et al.  Gamma-Ray Burst Peak Duration as a Function of Energy , 1995, astro-ph/9504075.

[52]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. 2: Peak energy evolution in bright, long bursts , 1994, astro-ph/9407090.

[53]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[54]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[55]  R. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .