Electrodeposition of copper tetracyanoquinodimethane for bipolar resistive switching non-volatile memories

Electrodeposition experiments of the charge-transfer complex copper tetracyanoquinodimethane (CuTCNQ) (where TCNQ denotes 7,7′,8,8′-tetracyanoquinodimethane) on noble metal electrodes (M=Pt and Au) were optimized in order to produce suitable layers for bipolar resistive switching cross-bar M/CuTCNQ/Al memory cells. Corresponding memories exhibited up to more than 10 000 consecutive write/erase cycles, with very stable on and off reading currents and an on/off current ratio of 10. CuTCNQ electrodeposition techniques were furthermore optimized for growing the material in 250 nm diameter contact holes of complementary metal oxide semiconductor dies with tungsten bottom contacts.

[1]  Realization of Nonvolatile Memory Devices Using Small Organic Molecules and Polymer , 2007, IEEE Transactions on Nanotechnology.

[2]  Jan Genoe,et al.  CuTCNQ resistive nonvolatile memories with a noble metal bottom electrode , 2007 .

[3]  C. Dehm,et al.  Self-Aligned Growth of Organometallic Layers for Nonvolatile Memories: Comparison of Liquid-Phase and Vapor-Phase Deposition , 2008 .

[4]  Anthony P O'Mullane,et al.  Electrocrystallization of Phase I, CuTCNQ (TCNQ = 7,7,8,8-Tetracyanoquinodimethane), on indium tin oxide and boron-doped diamond electrodes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[5]  Kris Myny,et al.  Organic CuTCNQ integrated in complementary metal oxide semiconductor copper back end-of-line for nonvolatile memories , 2006 .

[6]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[7]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[8]  Organic CuTCNQ nonvolatile memories for integration in the CMOS backend-of-line: preparation from gas/solid reaction and downscaling to an area of 0.25 /spl mu/m/sup 2/ , 2005, Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005..

[9]  L. Shields,et al.  Crystal structure of AgTCNQ and contrasting magnetic properties of electrochemically synthesised AgTCNQ and CuTCNQ (7,7,8,8-tetracyanoquinodimethane) , 1985 .

[10]  Alexander R. Harris,et al.  Characterisation of two distinctly different processes associated with the electrocrystallization of microcrystals of phase I CuTCNQ (TCNQ= 7, 7, 8, 8-tetracyanoquinodimethane) , 2006 .

[11]  Rainer Waser,et al.  On the origin of bistable resistive switching in metal organic charge transfer complex memory cells , 2007 .

[12]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[13]  C. Hu,et al.  Bistable Resistive Switching in Al2O3 Memory Thin Films , 2007 .

[14]  Richard S. Potember,et al.  Electrical switching and memory phenomena in Cu‐TCNQ thin films , 1979 .

[15]  W. Kowalsky,et al.  Contact effects in Cu(TCNQ) memory devices , 2008 .

[16]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[17]  Jianyong Ouyang,et al.  Nonvolatile electrical bistability of organic/metal-nanocluster/organic system , 2003 .

[18]  Resistive Electrical Switching of Cu + and Ag + based Metal-Organic Charge Transfer Complexes , 2008 .

[19]  M. Sampietro,et al.  Organic memory device based on 3,3′-bis-(3,5-di-tert-butyl-4- methoxyphenyl)-2,2′-bithiophene with high endurance and robustness to ambient air operation , 2006 .

[20]  M. Tamada,et al.  Direct formation of CuTCNQ complex salts with dual deposition , 1994 .

[21]  Masakazu Aono,et al.  Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring , 2002 .

[22]  Y. Yoshida,et al.  Organic Memory Device Based on Carbazole‐Substituted Cellulose , 2007 .

[23]  Tae-Woo Lee,et al.  Synthesis and nonvolatile memory behavior of redox-active conjugated polymer-containing ferrocene. , 2007, Journal of the American Chemical Society.

[24]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[25]  Haruo Tanaka,et al.  Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition , 2003 .

[26]  Philip M. Rice,et al.  Organic Materials and Thin‐Film Structures for Cross‐Point Memory Cells Based on Trapping in Metallic Nanoparticles , 2005 .

[27]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[28]  M. Burghard,et al.  Growth mechanism of solution‐deposited layers of the charge‐transfer salt CuDDQ , 2007 .

[29]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[30]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[31]  U. Böttger,et al.  Preparation and characterisation of amorphous Cu:7,7,8,8-Tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition , 2006 .

[32]  Won-Jae Joo,et al.  Metal filament growth in electrically conductive polymers for nonvolatile memory application. , 2006, The journal of physical chemistry. B.

[33]  A. Bond,et al.  Phase, Morphology, and Particle Size Changes Associated with the Solid−Solid Electrochemical Interconversion of TCNQ and Semiconducting CuTCNQ (TCNQ = Tetracyanoquinodimethane) , 2003 .

[34]  R. Muller,et al.  A comprehensive model for bipolar electrical switching of CuTCNQ memories , 2007 .

[35]  C. Dehm,et al.  New charge-transfer salts for reversible resistive memory switching. , 2006, Nano letters.

[36]  Anirban Bandyopadhyay,et al.  Tuning of Organic Reversible Switching via Self‐Assembled Supramolecular Structures , 2003 .

[37]  A. Bond,et al.  Voltammetric, EQCM, spectroscopic, and microscopic studies on the electrocrystallization of semiconducting, phase I, CuTCNQ on carbon, gold, and platinum electrodes by a nucleation-growth process , 2005 .

[38]  Hanhua Zhao,et al.  New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior , 1999 .