The differential ant-stigmergy algorithm

Ant-Colony Optimization (ACO) is a popular swarm intelligence scheme known for its efficiency in solving combinatorial optimization problems. However, despite some extensions of this approach to continuous optimization, high-dimensional problems remain a challenge for ACO. This paper presents an ACO-based algorithm for numerical optimization capable of solving high-dimensional real-parameter optimization problems. The algorithm, called the Differential Ant-Stigmergy Algorithm (DASA), transforms a real-parameter optimization problem into a graph-search problem. The parameters' differences assigned to the graph vertices are used to navigate through the search space. We compare the algorithm results with the results of previous studies on recent benchmark functions and show that the DASA is a competitive continuous optimization algorithm that solves high-dimensional problems effectively and efficiently.

[1]  Shang-Jeng Tsai,et al.  Solving large scale global optimization using improved Particle Swarm Optimizer , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[2]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[3]  Christian Blum,et al.  An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training , 2007, Neural Computing and Applications.

[4]  Shigeyoshi Tsutsui,et al.  Ant Colony Optimisation for Continuous Domains with Aggregation Pheromones Metaphor , 2004 .

[5]  Johann Dréo,et al.  A New Ant Colony Algorithm Using the Heterarchical Concept Aimed at Optimization of Multiminima Continuous Functions , 2002, Ant Algorithms.

[6]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[7]  Janez Brest,et al.  Large Scale Global Optimization using Differential Evolution with self-adaptation and cooperative co-evolution , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[8]  Seid H. Pourtakdoust,et al.  An Extension of Ant Colony System to Continuous Optimization Problems , 2004, ANTS Workshop.

[9]  Nicolas Monmarché,et al.  On how Pachycondyla apicalis ants suggest a new search algorithm , 2000, Future Gener. Comput. Syst..

[10]  Francisco Herrera,et al.  Memetic algorithm with Local search chaining for large scale continuous optimization problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[11]  Antonio LaTorre,et al.  Hybrid evolutionary algorithms for large scale continuous problems , 2009, GECCO '09.

[12]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[13]  Thomas Stützle,et al.  An Experimental Study of the Simple Ant Colony Optimization Algorithm , 2001 .

[14]  Chao,et al.  A Hybrid Ant Colony Optimization for the Prediction of Protein Secondary Structure , 2005 .

[15]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[16]  A. E. Eiben,et al.  Comparing parameter tuning methods for evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[17]  Fabrício Olivetti de França,et al.  Multivariate ant colony optimization in continuous search spaces , 2008, GECCO '08.

[18]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[19]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[20]  Min Kong,et al.  A Binary Ant Colony Optimization for the Unconstrained Function Optimization Problem , 2005, CIS.

[21]  Christian Blum,et al.  Ant colony optimization: Introduction and recent trends , 2005 .

[22]  Li Yan-jun,et al.  An adaptive ant colony system algorithm for continuous-space optimization problems , 2003 .

[23]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006, Proceedings (Lecture Notes in Computer Science) , 2006 .

[24]  Jurij Silc,et al.  High-dimensional real-parameter optimization using the differential ant-stigmergy algorithm , 2009, Int. J. Intell. Comput. Cybern..

[25]  Maoguo Gong,et al.  Baldwinian learning in clonal selection algorithm for optimization , 2010, Inf. Sci..

[26]  Janez Brest,et al.  High-dimensional real-parameter optimization using Self-Adaptive Differential Evolution algorithm with population size reduction , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[27]  Thomas Stützle,et al.  Ant Colony Optimization and Swarm Intelligence , 2008 .

[28]  Marco Dorigo,et al.  Ant algorithms and stigmergy , 2000, Future Gener. Comput. Syst..

[29]  Paul H. Calamai,et al.  Exchange strategies for multiple Ant Colony System , 2007, Inf. Sci..

[30]  Jurij Silc,et al.  Using Stigmergy to Solve Numerical Optimization Problems , 2008, Comput. Informatics.

[31]  Jun Zhang,et al.  Orthogonal Methods Based Ant Colony Search for Solving Continuous Optimization Problems , 2008, Journal of Computer Science and Technology.

[32]  Xin Yao,et al.  Multilevel cooperative coevolution for large scale optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[33]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[34]  Zhifeng Hao,et al.  ACO for Continuous Optimization Based on Discrete Encoding , 2006, ANTS Workshop.

[35]  Cara MacNish Towards unbiased benchmarking of evolutionary and hybrid algorithms for real-valued optimisation , 2007, Connect. Sci..

[36]  Tie-jun Wu,et al.  An adaptive ant colony system algorithm for continuous-space optimization problems. , 2003, Journal of Zhejiang University. Science.

[37]  Gao Wei Immunized Continuous Ant Colony Algorithm , 2006, 2007 Chinese Control Conference.

[38]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[39]  Jeng-Shyang Pan,et al.  Ant colony system with communication strategies , 2004, Inf. Sci..

[40]  Min Kong,et al.  A Direct Application of Ant Colony Optimization to Function Optimization Problem in Continuous Domain , 2006, ANTS Workshop.

[41]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[42]  Yan Ge,et al.  A hybrid ant colony algorithm for global optimization of continuous multi-extreme functions , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[43]  Bin Li,et al.  A restart univariate estimation of distribution algorithm: sampling under mixed Gaussian and Lévy probability distribution , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[44]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[45]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[46]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[47]  Akbar Karimi,et al.  Continuous ant colony system and tabu search algorithms hybridized for global minimization of continuous multi-minima functions , 2010, Comput. Optim. Appl..

[48]  Ian C. Parmee,et al.  The Ant Colony Metaphor for Searching Continuous Design Spaces , 1995, Evolutionary Computing, AISB Workshop.

[49]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.