Isotopic Implicit Surface Meshing

This paper addresses the problem of piecewise linear approximation of implicit surfaces. We first give a criterion ensuring that the zero-set of a smooth function and the one of a piecewise linear approximation of it are isotopic. Then, we deduce from this criterion an implicit surface meshing algorithm certifying that the output mesh is isotopic to the actual implicit surface. This is the first algorithm achieving this goal in a provably correct way.

[1]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[2]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[3]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[4]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[5]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[6]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  A. Sard,et al.  The measure of the critical values of differentiable maps , 1942 .

[9]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[10]  A. Dold Lectures on Algebraic Topology , 1972 .

[11]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[12]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[13]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[14]  R. Ho Algebraic Topology , 2022 .

[15]  Jonathan Richard Shewchuk,et al.  What Is a Good Linear Finite Element , 2002 .

[16]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[17]  Daniel Henry Gottlieb,et al.  The Index of Discontinuous Vector Fields , 1995 .

[18]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[19]  Andrei A. Agrachev,et al.  On Morse Theory for Piecewise Smooth Functions , 1997 .

[20]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[21]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[22]  Luiz Velho,et al.  Implicit Objects in Computer Graphics , 2002, Springer New York.

[23]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[24]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[25]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[26]  Luiz Velho,et al.  Simple and Efficient Polygonization of Implicit Surfaces , 1996, J. Graphics, GPU, & Game Tools.

[27]  David P. Dobkin,et al.  Contour tracing by piecewise linear approximations , 1990, TOGS.

[28]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[29]  Frédéric Chazal,et al.  A condition for isotopic approximation , 2004, SM '04.