Fully Adaptive and Integrated Numerical Methods for the Simulation and Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models

The present work is concerned with the simulation and optimal control of two-phase flows. We provide stable time discretization schemes for the simulation based on both, smooth and non-smooth free energy densities, which we combine with a practical, reliable and efficient adaptive mesh refinement concept for the spatial variables. Furthermore, we consider optimal control problems for two-phase flows and, among other things, derive first order optimality conditions. In the presence of smooth free energies we encounter classical Karush-Kuhn-Tucker (KKT) conditions, while in the case of non-smooth free energies we can prove C(larke)-stationarity. Moreover, we propose a dual weighted residual concept for spatial mesh adaptivity which is based on the newly derived stationarity conditions. We also address future research directions, including closed-loop control concepts and model order reduction techniques for simulation and control of variable density multiphase flows.

[1]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[2]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[3]  Maïtine Bergounioux,et al.  Optimal control of an obstacle problem , 1997 .

[4]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[5]  David Kay,et al.  Finite element approximation of a Cahn−Hilliard−Navier−Stokes system , 2008 .

[6]  Christian Kahle,et al.  An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system , 2013, J. Comput. Phys..

[7]  V. Barbu Optimal control of variational inequalities , 1984 .

[8]  Andreas Günther,et al.  Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of elliptic control problems with constraints on the gradient , 2007 .

[9]  Jan Giesselmann,et al.  A quasi-incompressible diffuse interface model with phase transition , 2012 .

[10]  Moulay Hicham Tber,et al.  An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..

[11]  Robert Nürnberg,et al.  A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy , 2009 .

[12]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[13]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[14]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[15]  Christian Kahle,et al.  A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn–Hilliard–Navier–Stokes system , 2016, Optimization and Engineering.

[16]  Michael Hintermüller,et al.  The Length of the Primal-Dual Path in Moreau-Yosida-Based Path-Following Methods for State Constrained Optimal Control , 2014, SIAM J. Optim..

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  J. P. Puel,et al.  Optimal Control in Some Variational Inequalities , 1984 .

[19]  F. Mignot Contrôle dans les inéquations variationelles elliptiques , 1976 .

[20]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[21]  Jan Sokolowski,et al.  Conical differentiability for evolution variational inequalities , 2003 .

[22]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[23]  Arnd Rösch,et al.  A-posteriori error estimates for optimal control problems with state and control constraints , 2012, Numerische Mathematik.

[24]  Michael Hintermüller,et al.  Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities , 2014 .

[25]  Michael Hintermüller,et al.  Goal-Oriented Adaptivity in Pointwise State Constrained Optimal Control of Partial Differential Equations , 2010, SIAM J. Control. Optim..

[26]  Francisco,et al.  SPLITTING SCHEMES FOR A NAVIER-STOKES-CAHN-HILLIARD MODEL FOR TWO FLUIDS WITH DIFFERENT DENSITIES , 2014 .

[27]  Maïtine Bergounioux,et al.  Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. , 1998 .

[28]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[29]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[30]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[31]  Arnd Rösch,et al.  A virtual control concept for state constrained optimal control problems , 2009, Comput. Optim. Appl..

[32]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[33]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[34]  G. Grün,et al.  On Convergent Schemes for Diffuse Interface Models for Two-Phase Flow of Incompressible Fluids with General Mass Densities , 2013, SIAM J. Numer. Anal..

[35]  Michael Hintermüller,et al.  A bundle-free implicit programming approach for a class of elliptic MPECs in function space , 2016, Mathematical Programming.

[36]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[37]  Boris Vexler,et al.  Adaptive Finite Elements for Elliptic Optimization Problems with Control Constraints , 2008, SIAM J. Control. Optim..

[38]  Günther Grün,et al.  Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model , 2012, J. Comput. Phys..

[39]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[40]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[41]  Harald Garcke,et al.  Multi-material phase field approach to structural topology optimization , 2013 .

[42]  Harald Garcke,et al.  Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method , 2011 .

[43]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[44]  C. M. Elliott,et al.  Numerical computation of advection and diffusion on evolving diffuse interfaces , 2011 .

[45]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[46]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[47]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[48]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[49]  Gerd Wachsmuth,et al.  Towards M-stationarity for Optimal Control of the Obstacle Problem with Control Constraints , 2016, SIAM J. Control. Optim..

[50]  G. Tierra,et al.  Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models , 2015 .

[51]  Boris S. Mordukhovich,et al.  Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints , 2014, Math. Program..

[52]  Michael Hintermüller,et al.  Mathematical Programs with Complementarity Constraints in Function Space: C- and Strong Stationarity and a Path-Following Algorithm , 2009, SIAM J. Optim..

[53]  Christian Kahle,et al.  A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System , 2011, System Modelling and Optimization.

[54]  Charles M. Elliott,et al.  Mesh Adaptivity in Optimal Controlof Elliptic Variational Inequalities with Point-Tracking of the State , 2015 .

[55]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. , 1988, Physical review. A, General physics.

[56]  Kazufumi Ito,et al.  Optimal Control of Elliptic Variational Inequalities , 2000 .

[57]  Harald Garcke,et al.  On an Incompressible Navier-Stokes/Cahn-Hilliard System with Degenerate Mobility , 2012, 1210.1011.

[59]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  Harald Garcke,et al.  A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow , 2014, 1402.6524.

[61]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[62]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[63]  Harald Garcke,et al.  Numerical Approximation of Phase Field Based Shape and Topology Optimization for Fluids , 2014, SIAM J. Sci. Comput..

[64]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[65]  Harald Garcke,et al.  Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities , 2011, Journal of Mathematical Fluid Mechanics.

[66]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[67]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[68]  Dan Tiba,et al.  Optimal Control of Nonsmooth Distributed Parameter Systems , 1990 .

[69]  Boris Vexler,et al.  A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints , 2009, Comput. Optim. Appl..

[70]  Stefan Metzger,et al.  On Fully Decoupled, Convergent Schemes for Diffuse Interface Models for Two-Phase Flow with General Mass Densities , 2016 .

[71]  Christian Kahle,et al.  A $L^\infty$ bound for the Cahn--Hilliard equation with relaxed non-smooth free energy , 2015, 1511.02618.

[72]  Avner Friedman,et al.  Optimal control for variational inequalities , 1986 .

[73]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[74]  Andreas Günther,et al.  Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls , 2011, Comput. Optim. Appl..

[75]  Michael Hintermüller,et al.  Goal-oriented adaptivity in control constrained optimal control of partial differential equations , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[76]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[77]  Michael Hinze Instantaneous Closed Loop Control of the Navier-Stokes System , 2005, SIAM J. Control. Optim..

[78]  Michael Hintermüller,et al.  Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system , 2012 .

[79]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[80]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[81]  F. Otto,et al.  Crossover of the coarsening rates in demixing of binary viscous liquids , 2013 .

[82]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[83]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[84]  R. Temam,et al.  Feedback control for unsteady flow and its application to the stochastic Burgers equation , 1993, Journal of Fluid Mechanics.

[85]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[86]  Maurizio Falcone,et al.  An Adaptive POD Approximation Method for the Control of Advection-Diffusion Equations , 2013, Control and Optimization with PDE Constraints.

[87]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[88]  Ping Lin,et al.  A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law , 2014, J. Comput. Phys..

[89]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[90]  Sebastian Aland,et al.  Time integration for diffuse interface models for two-phase flow , 2013, J. Comput. Phys..

[91]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[92]  Christian Kahle,et al.  Model Predictive Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models , 2013 .

[93]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[94]  Dominic Breit,et al.  Weak solutions for a non-Newtonian diffuse interface model with different densities , 2015, 1509.05663.

[95]  Rüdiger Verfürth A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations , 2010 .

[96]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[97]  Harald Garcke,et al.  Optimal control of time discrete two‐phase flow governed by a diffuse interface model , 2016 .

[98]  Harald Garcke,et al.  Diffuse interface modelling of soluble surfactants in two-phase flow , 2013, 1303.2559.

[99]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[100]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[101]  Axel Voigt,et al.  Benchmark computations of diffuse interface models for two‐dimensional bubble dynamics , 2012 .

[102]  René Schneider,et al.  A Posteriori Error Estimation for Control-Constrained, Linear-Quadratic Optimal Control Problems , 2016, SIAM J. Numer. Anal..