Optimal synchronization of complex networks.

We study optimal synchronization in networks of heterogeneous phase oscillators. Our main result is the derivation of a synchrony alignment function that encodes the interplay between network structure and oscillators' frequencies and that can be readily optimized. We highlight its utility in two general problems: constrained frequency allocation and network design. In general, we find that synchronization is promoted by strong alignments between frequencies and the dominant Laplacian eigenvectors, as well as a matching between the heterogeneity of frequencies and network structure.

[1]  W. Marsden I and J , 2012 .

[2]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[3]  Adilson E Motter,et al.  Robustness of optimal synchronization in real networks. , 2011, Physical review letters.

[4]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[5]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[6]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[7]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[8]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[9]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[10]  Y. Kuramoto,et al.  A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment , 1986 .

[11]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Erik M. Bollt,et al.  Master stability functions for coupled nearly identical dynamical systems , 2008, 0811.0649.

[13]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[14]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[16]  J. Buck Synchronous Rhythmic Flashing of Fireflies. II. , 1938, The Quarterly Review of Biology.

[17]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[18]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[19]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[20]  Ivan Razinkov,et al.  Sensing array of radically coupled genetic biopixels , 2011, Nature.

[21]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[22]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[23]  Arkady Pikovsky,et al.  Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. , 2007, Physical review letters.

[24]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[25]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[26]  Edward Ott,et al.  Theoretical mechanics: Crowd synchrony on the Millennium Bridge , 2005, Nature.

[27]  Michael Chertkov,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[28]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[29]  Lubos Buzna,et al.  Synchronization in symmetric bipolar population networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Juan G. Restrepo,et al.  Effects of degree-frequency correlations on network synchronization: Universality and full phase-locking , 2012, 1208.4540.

[31]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[32]  M. Brede Synchrony-optimized networks of non-identical Kuramoto oscillators , 2008, 0809.4531.

[33]  Choujun Zhan,et al.  On the distributions of Laplacian eigenvalues versus node degrees in complex networks , 2010 .

[34]  Per Sebastian Skardal,et al.  Hierarchical synchrony of phase oscillators in modular networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Adilson E Motter,et al.  Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions , 2009, Proceedings of the National Academy of Sciences.

[36]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .