Hardness as randomness: a survey of universal derandomization

We survey recent developments in the study of probabilistic complexity classes. While the evidence seems to support the conjecture that probabilism can be deterministic ally simulated with relatively low overhead, i.e., that P = BPP, it also indicates that this may be a difficult question to resolve. In fact, proving that probalistic algorithms have non-trivial deterministic simulations is basically equivalent to proving circuit lower bounds, either in the algebraic or Boolean models.

[1]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[2]  Madhu Sudan,et al.  Improved Low-Degree Testing and its Applications , 1997, STOC '97.

[3]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[4]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1992, JACM.

[5]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[6]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[7]  Christopher Umans,et al.  Pseudo-random generators for all hardnesses , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[8]  Lance Fortnow,et al.  BPP has subexponential time simulations unlessEXPTIME has publishable proofs , 2005, computational complexity.

[9]  Joan Feigenbaum,et al.  Hiding Instances in Multioracle Queries , 1990, STACS.

[10]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[11]  Avi Wigderson,et al.  Randomness vs Time: Derandomization under a Uniform Assumption , 2001, J. Comput. Syst. Sci..

[12]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[13]  José D. P. Rolim,et al.  Weak random sources, hitting sets, and BPP simulations , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[14]  Lance Fortnow,et al.  Comparing notions of full derandomization , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[15]  Sanjeev Arora,et al.  Probabilistic checking of proofs; a new characterization of NP , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  Aravind Srinivasan,et al.  Randomness-Optimal Unique Element Isolation with Applications to Perfect Matching and Related Problems , 1995, SIAM J. Comput..

[17]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[18]  Richard J. Lipton,et al.  New Directions In Testing , 1989, Distributed Computing And Cryptography.

[19]  Manuel Blum,et al.  Equivalence of Free Boolean Graphs can be Decided Probabilistically in Polynomial Time , 1980, Inf. Process. Lett..

[20]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[21]  Erich Kaltofen,et al.  Polynomial Factorization 1987-1991 , 1992, LATIN.

[22]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[23]  Valentine Kabanets,et al.  2 Better Tradeoffs 2 . 1 Hardness amplification via error-correcting codes , 2007 .

[24]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[25]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[26]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[27]  Valentine Kabanets Easiness Assumptions and Hardness Tests: Trading Time for Zero Error , 2001, J. Comput. Syst. Sci..

[28]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[29]  Zhi-Zhong Chen,et al.  Reducing randomness via irrational numbers , 1997, STOC '97.

[30]  Lance Fortnow,et al.  Nonrelativizing separations , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[31]  Avi Wigderson,et al.  Randomness vs. time: de-randomization under a uniform assumption , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[32]  Seinosuke Toda On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.

[33]  Avi Wigderson,et al.  Near-optimal conversion of hardness into pseudo-randomness , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[34]  Avi Wigderson,et al.  Extractors and pseudo-random generators with optimal seed length , 2000, STOC '00.

[35]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[36]  Luca Trevisan,et al.  Extractors and pseudorandom generators , 2001, JACM.

[37]  Christopher Umans,et al.  Simple extractors for all min-entropies and a new pseudo-random generator , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[38]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[39]  Marek Karpinski,et al.  On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite Fields , 1991, Theor. Comput. Sci..

[40]  José D. P. Rolim,et al.  A new general derandomization method , 1998, JACM.

[41]  Stephen A. Cook,et al.  Efficiently Approximable Real-Valued Functions , 2000, Electron. Colloquium Comput. Complex..

[42]  SudanMadhu,et al.  Proof verification and the hardness of approximation problems , 1998 .

[43]  Erich Kaltofen,et al.  Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators , 1990, J. Symb. Comput..

[44]  Leonid A. Levin,et al.  One-way functions and pseudorandom generators , 1985, STOC '85.

[45]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[46]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[47]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[48]  José D. P. Rolim,et al.  Hitting Sets Derandomize BPP , 1996, ICALP.

[49]  Arjen K. Lenstra Factoring Multivariate Polynomials over Finite Fields , 1985, J. Comput. Syst. Sci..

[50]  Journal of the Association for Computing Machinery , 1961, Nature.

[51]  Ronitt Rubinfeld,et al.  Self-testing/correcting for polynomials and for approximate functions , 1991, STOC '91.

[52]  Erich Kaltofen,et al.  Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[53]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[54]  José D. P. Rolim,et al.  Weak Random Sources, Hitting Sets, and BPP Simulations , 1999, SIAM J. Comput..

[55]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[56]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[57]  Valentine Kabanets,et al.  Easiness assumptions and hardness tests: trading time for zero error , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[58]  Arjen K. Lenstra,et al.  Factoring Multivariate Polynomials over Algebraic Number Fields , 1984, SIAM J. Comput..

[59]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2002, J. Comput. Syst. Sci..

[60]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[61]  Ron M. Roth,et al.  Interpolation and Approximation of Sparse Multivariate Polynomials over GF(2) , 1991, SIAM J. Comput..

[62]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[63]  Russell Impagliazzo,et al.  Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[64]  Daniel A. Spielman,et al.  Randomness efficient identity testing of multivariate polynomials , 2001, STOC '01.

[65]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[66]  L. Valiant Why is Boolean complexity theory difficult , 1992 .

[67]  Salil P. Vadhan,et al.  Checking polynomial identities over any field: towards a derandomization? , 1998, STOC '98.

[68]  Aravind Srinivasan,et al.  Randomness-optimal unique element isolation, with applications to perfect matching and related problems , 1993, SIAM J. Comput..

[69]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .