Consistency and Generalization Bounds for Maximum Entropy Density Estimation
暂无分享,去创建一个
[1] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[2] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[3] P. Gänssler. Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .
[4] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[5] A. Barron,et al. APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .
[6] John D. Lafferty,et al. Boosting and Maximum Likelihood for Exponential Models , 2001, NIPS.
[7] John D. Lafferty,et al. Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Tong Zhang,et al. Covering Number Bounds of Certain Regularized Linear Function Classes , 2002, J. Mach. Learn. Res..
[9] Tong Zhang,et al. Class-size Independent Generalization Analsysis of Some Discriminative Multi-Category Classification , 2004, NIPS.
[10] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[11] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[12] J. Borwein,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[13] S. Geer. Empirical Processes in M-Estimation , 2000 .
[14] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[15] Frederick Jelinek,et al. Statistical methods for speech recognition , 1997 .
[16] D. Haussler,et al. Worst Case Prediction over Sequences under Log Loss , 1999 .
[17] Francesco Palmieri,et al. Objective priors from maximum entropy in data classification , 2013, Inf. Fusion.
[18] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[19] Dale Schuurmans,et al. Learning mixture models with the regularized latent maximum entropy principle , 2004, IEEE Transactions on Neural Networks.
[20] V. Koltchinskii,et al. Empirical margin distributions and bounding the generalization error of combined classifiers , 2002, math/0405343.
[21] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[22] Tong Zhang,et al. Leave-One-Out Bounds for Kernel Methods , 2003, Neural Computation.
[23] Anind K. Dey,et al. Maximum Entropy Inverse Reinforcement Learning , 2008, AAAI.
[24] Colin McDiarmid,et al. Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .
[25] Ron Meir,et al. Generalization Error Bounds for Bayesian Mixture Algorithms , 2003, J. Mach. Learn. Res..
[26] A. Barron. Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.
[27] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization , 2003 .
[28] Dale Schuurmans,et al. Combining Statistical Language Models via the Latent Maximum Entropy Principle , 2005, Machine Learning.
[29] Dale Schuurmans,et al. The latent maximum entropy principle , 2002, Proceedings IEEE International Symposium on Information Theory,.
[30] D. Panchenko,et al. Risk bounds for mixture density estimation , 2005 .
[31] Ronald Rosenfeld,et al. A survey of smoothing techniques for ME models , 2000, IEEE Trans. Speech Audio Process..
[32] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[33] Miroslav Dudík,et al. Performance Guarantees for Regularized Maximum Entropy Density Estimation , 2004, COLT.
[34] S. D. Pietra,et al. Statistical Learning Algorithms Based on Bregman Distances , 1997 .
[35] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[36] Dale Schuurmans,et al. Learning Continuous Latent Variable Models with Bregman Divergences , 2003, ALT.
[37] Bin Yu,et al. Boosting with early stopping: Convergence and consistency , 2005, math/0508276.
[38] Ronald Rosenfeld,et al. A maximum entropy approach to adaptive statistical language modelling , 1996, Comput. Speech Lang..