Machine Learning approach for TWA detection relying on ensemble data design

[1]  Guanzheng Liu,et al.  Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network , 2021, Comput. Biol. Medicine.

[2]  Long Yu,et al.  Applications of Machine Learning in Ambulatory ECG , 2021, Hearts.

[3]  Xinwen Liu,et al.  Deep learning in ECG diagnosis: A review , 2021, Knowl. Based Syst..

[4]  Priya Ranjan Muduli,et al.  AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals , 2021, Comput. Biol. Medicine.

[5]  Laura Burattini,et al.  Enhanced adaptive matched filter for automated identification and measurement of electrocardiographic alternans , 2021, Biomed. Signal Process. Control..

[6]  Wei Sun,et al.  The application of deep learning in electrocardiogram: Where we came from and where we should go? , 2021, International journal of cardiology.

[7]  R. Verrier Modified Moving Average T-wave alternans cutpoints , 2021, Indian pacing and electrophysiology journal.

[8]  Yining Sun,et al.  Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network , 2021, Entropy.

[9]  Junaid Qadir,et al.  An active learning method for diabetic retinopathy classification with uncertainty quantification , 2020, Medical & Biological Engineering & Computing.

[10]  Yevgeniy Karplyuk,et al.  Application of Machine Learning Methods for Artificial ECG with T-wave alternans , 2020, 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO).

[11]  Julià Camps,et al.  Machine learning in the electrocardiogram. , 2019, Journal of electrocardiology.

[12]  L. Burattini,et al.  Electrocardiographic Alternans: A New Approach , 2019, IFMBE Proceedings.

[13]  Jing Jiang,et al.  A novel multi-module neural network system for imbalanced heartbeats classification , 2019, Expert Syst. Appl. X.

[14]  Yevgeniy Karplyuk,et al.  Evaluation of Machine Learning Techniques for ECG T-Wave Alternans , 2018, 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO).

[15]  Pablo Laguna,et al.  Post-Ventricular Premature Contraction Phase Correction Improves the Predictive Value of Average T-Wave Alternans in Ambulatory ECG Recordings , 2018, IEEE Transactions on Biomedical Engineering.

[16]  Rebeca Goya-Esteban,et al.  Benchmarking of a T-wave alternans detection method based on empirical mode decomposition , 2017, Comput. Methods Programs Biomed..

[17]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[18]  Arcadi García-Alberola,et al.  Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence , 2016, Front. Physiol..

[19]  Sajid Bashir,et al.  A template matched-filter based scheme for detection and estimation of t-wave alternans , 2014, Biomed. Signal Process. Control..

[20]  Dariusz Janusek,et al.  A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration , 2014, Comput. Methods Programs Biomed..

[21]  Rebeca Goya-Esteban,et al.  Nonparametric Signal Processing Validation in T-Wave Alternans Detection and Estimation , 2014, IEEE Transactions on Biomedical Engineering.

[22]  Antonis A. Armoundas,et al.  T-Wave Alternans as an Arrhythmic Risk Stratifier: State of the Art , 2013, Current Cardiology Reports.

[23]  Juan Pablo Martínez,et al.  Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility--consensus guideline by International Society for Holter and Noninvasive Electrocardiology. , 2011, Journal of the American College of Cardiology.

[24]  Sridhar Krishnan,et al.  T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization. , 2011, Medical engineering & physics.

[25]  Shamim Nemati,et al.  A Nonparametric Surrogate-Based Test of Significance for T-Wave Alternans Detection , 2011, IEEE Transactions on Biomedical Engineering.

[26]  Manuel Blanco-Velasco,et al.  Nonlinear Trend Estimation of the Ventricular Repolarization Segment for T-Wave Alternans Detection , 2010, IEEE Transactions on Biomedical Engineering.

[27]  Pablo Laguna,et al.  A Multilead Scheme Based on Periodic Component Analysis for T-Wave Alternans Analysis in the ECG , 2010, Annals of Biomedical Engineering.

[28]  Laura Burattini,et al.  Correlation method versus enhanced modified moving average method for automatic detection of T-wave alternans , 2010, Comput. Methods Programs Biomed..

[29]  Laura Burattini,et al.  Comparative analysis of methods for automatic detection and quantification of microvolt T-wave alternans. , 2009, Medical engineering & physics.

[30]  黄亚明 PhysioBank , 2009 .

[31]  Pablo Laguna,et al.  Multilead Analysis of T-Wave Alternans in the ECG Using Principal Component Analysis , 2009, IEEE Transactions on Biomedical Engineering.

[32]  Paul S. Addison,et al.  T-Wave Alternans Found in Preventricular Tachyarrhythmias in CCU Patients Using a Wavelet Transform-Based Methodology , 2008, IEEE Transactions on Biomedical Engineering.

[33]  Laura Burattini,et al.  Adaptive Match Filter Based Method for Time vs. Amplitude Characterization of Microvolt ECG T-Wave Alternans , 2008, Annals of Biomedical Engineering.

[34]  S. Hohnloser,et al.  Risk Stratification Using T‐Wave Alternans: More Questions Waiting to be Answered , 2008, Journal of cardiovascular electrophysiology.

[35]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[36]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[37]  Pablo Laguna,et al.  Characterization of repolarization alternans during ischemia: time-course and spatial analysis , 2006, IEEE Transactions on Biomedical Engineering.

[38]  J. A. Gomes,et al.  Microvolt T-wave alternans for the risk stratification of ventricular tachyarrhythmic events: a meta-analysis. , 2005, Journal of the American College of Cardiology.

[39]  Juan Pablo Martínez,et al.  Methodological principles of T wave alternans analysis: a unified framework , 2005, IEEE Transactions on Biomedical Engineering.

[40]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[41]  J. Bigger,et al.  Ambulatory Electrocardiogram‐Based Tracking of T Wave Alternans in Postmyocardial Infarction Patients to Assess Risk of Cardiac Arrest or Arrhythmic Death , 2003, Journal of cardiovascular electrophysiology.

[42]  R. Verrier,et al.  Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. , 2002, Journal of applied physiology.

[43]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[44]  G.B. Moody,et al.  The impact of the MIT-BIH Arrhythmia Database , 2001, IEEE Engineering in Medicine and Biology Magazine.

[45]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[46]  Wojciech Zareba,et al.  Correlation Method for Detection of Transient T‐Wave Alternans in Digital Holter ECG Recordings , 1999 .

[47]  R J Cohen,et al.  Predicting Sudden Cardiac Death From T Wave Alternans of the Surface Electrocardiogram: , 1996, Journal of cardiovascular electrophysiology.

[48]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[49]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[50]  G. Moody,et al.  The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. , 1992, European heart journal.

[51]  R. Verrier,et al.  Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. , 1991, Science.

[52]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[53]  G. Moody,et al.  The Physionet/Computers in Cardiology challenge 2008: T-wave alternans , 2008, 2008 Computers in Cardiology.

[54]  Daniel Austin,et al.  Enhanced modified moving average analysis of T-wave alternans using a curve matching method: a simulation study , 2008, Medical & Biological Engineering & Computing.

[55]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.