On the Monge–Ampère equation with boundary blow-up: existence, uniqueness and asymptotics

We consider the Monge–Ampère equation det D2u = b(x)f(u) > 0 in Ω, subject to the singular boundary condition u = ∞ on ∂Ω. We assume that $$b\in C^\infty(\overline{\Omega})$$ is positive in Ω and non-negative on ∂Ω. Under suitable conditions on f, we establish the existence of positive strictly convex solutions if Ω is a smooth strictly convex, bounded domain in $${\mathbb R}^N$$ with N ≥ 2. We give asymptotic estimates of the behaviour of such solutions near ∂Ω and a uniqueness result when the variation of f at ∞ is regular of index q greater than N (that is, $$\lim_{u\to \infty} f(\lambda u)/f(u)=\lambda^q$$ , for every λ > 0). Using regular variation theory, we treat both cases: b > 0 on ∂Ω and $$b\equiv 0$$ on ∂Ω.

[1]  Sur les equations de Monge-Ampère , 1985 .

[2]  J. Keller On solutions of δu=f(u) , 1957 .

[3]  L. Bieberbach Δu=eu und die automorphen Funktionen , 1916 .

[4]  P. Lions Two remarks on Monge-Ampere equations , 1985 .

[5]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[6]  Laurent Véron,et al.  Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations , 1997 .

[7]  Yihong Du,et al.  Blow-Up Solutions for a Class of Semilinear Elliptic and Parabolic Equations , 1999, SIAM J. Math. Anal..

[8]  Florica-Corina Cirstea,et al.  Elliptic equations with competing rapidly varying nonlinearities and boundary blow-up , 2007, Advances in Differential Equations.

[9]  Shing-Tung Yau,et al.  On the existence of a complete Kähler metric on non‐compact complex manifolds and the regularity of fefferman's equation , 1980 .

[10]  Bo Guan,et al.  The dirichlet problem for a class of fully nonlinear elliptic equations , 1994 .

[11]  Paolo Salani,et al.  Convexity and asymptotic estimates for large solutions of Hessian equations , 2000, Differential and Integral Equations.

[12]  C. Bandle,et al.  Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary , 1995 .

[13]  E. Seneta Regularly varying functions , 1976 .

[14]  N. Trudinger,et al.  The Dirichlet problem for the equation of prescribed Gauss curvature , 1983, Bulletin of the Australian Mathematical Society.

[15]  S. Trudinger Weak solutions of hessian equations , 1997 .

[16]  Huaiyu Jian,et al.  The Monge–Ampère equation with infinite boundary value , 2004 .

[17]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[18]  Neil S. Trudinger,et al.  Fully nonlinear, uniformly elliptic equations under natural structure conditions , 1983 .

[19]  Vicenţiu D. Rădulescu,et al.  Uniqueness of the blow-up boundary solution of logistic equations with absorbtion , 2002 .

[20]  Robert Osserman,et al.  On the inequality $\Delta u\geq f(u)$. , 1957 .

[21]  J. Karamata,et al.  Sur un mode de croissance régulière. Théorèmes fondamentaux , 1933 .

[22]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[23]  Neil S. Trudinger,et al.  On the Dirichlet problem for Hessian equations , 1995 .

[24]  Vicentiu D. Rădulescu,et al.  Extremal singular solutions for degenerate logistic-type equations in anisotropic media , 2004 .

[25]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[26]  Jerk Matero,et al.  The Bieberbach-Rademacher problem for the Monge-Ampère operator , 1996 .

[27]  Xu-jia Wang,et al.  A variational theory of the Hessian equation , 2001 .

[28]  Corina Cîrstea,et al.  Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach , 2005, Asymptot. Anal..

[29]  Kazuhiro Takimoto Solution to the boundary blowup problem for k-curvature equation , 2006 .

[30]  Paolo Salani,et al.  Boundary blow-up problems for Hessian equations , 1998 .

[31]  A. Lazer McKenna On singular boundary value problems for the Monge - Ampere operator , 1996 .

[32]  Yihong Du,et al.  General Uniqueness Results and Variation Speed for Blow‐Up Solutions of Elliptic Equations , 2005 .

[33]  L. Nirenberg,et al.  Partial Differential Equations Invariant under Conformal or Projective Transformations , 1974 .

[34]  K. Tso On a real Monge—Ampère functional , 1990 .

[35]  Thierry Aubin Monge-Ampère Equations , 1982 .