Discontinuous Galerkin immersed finite element methods for parabolic interface problems

In this article, interior penalty discontinuous Galerkin methods using immersed finite element functions are employed to solve parabolic interface problems. Typical semi-discrete and fully discrete schemes are presented and analyzed. Optimal convergence for both semi-discrete and fully discrete schemes is proved. Some numerical experiments are provided to validate our theoretical results.

[1]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[2]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[3]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[4]  Xiaoming He,et al.  A selective immersed discontinuous Galerkin method for elliptic interface problems , 2014 .

[5]  Xu Zhang,et al.  A Method of Lines Based on Immersed Finite Elements for Parabolic Moving Interface Problems , 2013 .

[6]  Tao Lin,et al.  A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods , 2015, J. Sci. Comput..

[7]  Slimane Adjerid,et al.  An immersed discontinuous finite element method for Stokes interface problems , 2015 .

[8]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[9]  Xiaoming He Bilinear Immersed Finite Elements for Interface Problems , 2009 .

[10]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[11]  Tao Lin,et al.  Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems , 2015, SIAM J. Numer. Anal..

[12]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[13]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[14]  Xu Zhang,et al.  Nonconforming Immersed Finite Element Methods for Interface Problems , 2013 .

[15]  Théodore Papadopoulo,et al.  A Trilinear Immersed Finite Element Method for Solving the Electroencephalography Forward Problem , 2010, SIAM J. Sci. Comput..

[16]  Zhilin Li,et al.  A Symmetric and Consistent Immersed Finite Element Method for Interface Problems , 2014, J. Sci. Comput..

[17]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[18]  T. Lin,et al.  THE IMMERSED FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS USING THE LAPLACE TRANSFORMATION IN TIME DISCRETIZATION , 2013 .

[19]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[20]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[21]  KAIXIN WANG,et al.  AN IMMERSED EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR TRANSIENT ADVECTION-DIFFUSION EQUATIONS WITH INTERFACES , 2011 .

[22]  Tao Lin,et al.  Linear and bilinear immersed finite elements for planar elasticity interface problems , 2012, J. Comput. Appl. Math..

[23]  Tao Lin,et al.  A locking-free immersed finite element method for planar elasticity interface problems , 2013, J. Comput. Phys..

[24]  Zhilin Li,et al.  Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions , 2009 .

[25]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[26]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[27]  Xiaoming He,et al.  Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient , 2010, J. Syst. Sci. Complex..

[28]  Z. Wang,et al.  Immersed finite element methods for 4th order differential equations , 2011, J. Comput. Appl. Math..

[29]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[30]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[31]  Tao Lin,et al.  Partially penalized immersed finite element methods for parabolic interface problems , 2015, J. Comput. Appl. Math..

[32]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[33]  Do Y. Kwak,et al.  Optimal convergence analysis of an immersed interface finite element method , 2010, Adv. Comput. Math..

[34]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .