Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting

[1]  Arnan Mitchell,et al.  Micro‐ and Nanostructured Surfaces for Selective Solar Absorption , 2015 .

[2]  Ivan Celanovic,et al.  Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals , 2014, Advanced materials.

[3]  Wavelength-Selective Solar Thermal Absorber With Two-Dimensional Nickel Gratings , 2014 .

[4]  Hao Wang,et al.  Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance. , 2014, Optics letters.

[5]  A. R. Mahoney,et al.  Characterization of Pyromark 2500 Paint for High-Temperature Solar Receivers , 2014 .

[6]  Min Qiu,et al.  Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles , 2014 .

[7]  Yanxia Cui,et al.  Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate. , 2014, Optics letters.

[8]  Yong Shuai,et al.  Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure , 2013 .

[9]  Hao Wang,et al.  Perfect selective metamaterial solar absorbers. , 2013, Optics express.

[10]  Zhuomin M. Zhang,et al.  Measurement of Coherent Thermal Emission Due to Magnetic Polaritons in Subwavelength Microstructures , 2013 .

[11]  Shangfeng Yang,et al.  Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers , 2013 .

[12]  Aaswath Raman,et al.  Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. , 2013, Nano letters.

[13]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[14]  Zhuomin M. Zhang,et al.  Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics , 2012 .

[15]  Y. X. Yeng,et al.  Enabling high-temperature nanophotonics for energy applications , 2012, Proceedings of the National Academy of Sciences.

[16]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[17]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[18]  Saad Mekhilef,et al.  A review on solar energy use in industries , 2011 .

[19]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[20]  Zhuomin M. Zhang,et al.  Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays , 2010 .

[21]  Abul K. Azad,et al.  Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers , 2010 .

[22]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[23]  Ivan Celanovic,et al.  Two-dimensional tungsten photonic crystals as selective thermal emitters , 2008 .

[24]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[25]  Harald Giessen,et al.  Plasmon Hybridization in Stacked Cut‐Wire Metamaterials , 2007 .

[26]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[27]  Zhuomin M. Zhang Nano/Microscale Heat Transfer , 2007 .

[28]  Ekmel Ozbay,et al.  Capacitor-loaded split ring resonators as tunable metamaterial components , 2007 .

[29]  W. Barnes,et al.  Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons , 2004 .

[30]  F. Medina,et al.  Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. , 2002, Physical review letters.

[31]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .