The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor

Abstract DTA measurements were used for studies of the kinetics of the cyclization and oxidation of PAN during the thermal treatment in air and nitrogen. The cyclization is a first order reaction with an activation energy of about 30 kcal/mole in nitrogen and about 34 kcal/mole in air. For copolymer PAN (5% methylacrylate) lower activation energies were found. Oxygen promotes the initiation of the cyclization but does not catalyze the cyclization reaction itself. The sequence of cyclization and oxidation reactions is discussed in detail.

[1]  R. Houtz "Orlon" Acrylic Fiber: Chemistry and Properties , 1950 .

[2]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—VI. Acrylonitrile copolymers containing carboxylic acid and amide structures , 1972 .

[3]  L. Combe Color formation in polyacrylonitrile , 1957 .

[4]  J. N. Hay Thermal reactions of polyacrylonitrile , 1968 .

[5]  J. Brandrup,et al.  On the Chromophore of Polyacrylonitrile. IV. Thermal Oxidation of Polyacrylonitrile and Other Nitrile-Containing Compounds , 1968 .

[6]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—I. Thermal analysis of polyacrylonitrile , 1970 .

[7]  D. Campbell,et al.  1,2‐Dinitrile polymers. I. Hompolymers and copolymers of fumaronitrile, maleonitrile, and succinonitrile , 1968 .

[8]  J. Brandrup,et al.  On the Chromophore of Polyacrylonitrile. III. The Mechanism of Ketone Formation in Polyacrylonitrile , 1968 .

[9]  A. Monahan Thermal degradation of polyacrylonitrile in the temperature range 280–450°c. , 1966 .

[10]  L. Reich Polymer degradation by differential thermal analysis techniques , 1968 .

[11]  H. N. Friedlander,et al.  On the Chromophore of Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile , 1968 .

[12]  J. N. Hay,et al.  Thermal coloration and insolubilization in polyacrylonitrile , 1962 .

[13]  B. Kaesche‐Krischer Zur Pyrolyse und Oxydation von Kunststoffen , 1965 .

[14]  R. Conley,et al.  Examination of the oxidative degradation of polyacrylonitrile using infrared spectroscopy , 1963 .

[15]  J. Bailey,et al.  Carbon Fibre Formation—the Oxidation Treatment , 1971, Nature.

[16]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[17]  J. Brandrup,et al.  On the Chromophore of Polyacrylonitrile. II. The Presence of Ketonic Groups in Polyacrylonitrile , 1968 .

[18]  J. Parsons,et al.  Pyrolysis of polyacrylonitrile , 1956 .

[19]  W. N. Turner,et al.  The pyrolysis of acrylic fiber in inert atmosphere. I. Reactions up to 400°C , 1969 .

[20]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—III. Thermal analysis of preheated polymers , 1971 .

[21]  J. Brandrup,et al.  A chemical means of distinguishing between conjugated and conjugated bonds , 1966 .

[22]  Y. Moshkovskii,et al.  Heat treatment of polyacrylonitrile in solution in dimethylformamide , 1964 .

[23]  Peter L. de Benneville,et al.  Reactive Nitrile Groups. I. The Reaction of α,ι-Dinitriles with Aqueous Amines1 , 1955 .

[24]  H. Jellinek,et al.  PHOTOLYSIS OF POLYACRYLONITRILE , 1961 .

[25]  N. Grassie,et al.  Pyrolysis of polyacrylonitrile and related polymers—II: The effect of sample preparation on the thermal behaviour of polyacrylonitrile , 1971 .

[26]  J. Brandrup On the Chromophore of Polyacrylonitrile. V. The Oxidation of Isobutyronitrile , 1968 .

[27]  E. Thompson The thermal behavior of acrylonitrile polymers. I. On the decomposition of polyacrylonitrile between 250 and 325°C. , 1966 .