An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models

This is an introduction to Bayesian inference with a focus on hierarchical models and hyper-parameters. We write primarily for an audience of Bayesian novices, but we hope to provide useful insights for seasoned veterans as well. Examples are drawn from gravitational-wave astronomy, though we endeavor for the presentation to be understandable to a broader audience. We begin with a review of the fundamentals: likelihoods, priors, and posteriors. Next, we discuss Bayesian evidence, Bayes factors, odds ratios, and model selection. From there, we describe how posteriors are estimated using samplers such as Markov Chain Monte Carlo algorithms and nested sampling. Finally, we generalize the formalism to discuss hyper-parameters and hierarchical models. We include extensive appendices discussing the creation of credible intervals, Gaussian noise, explicit marginalization, posterior predictive distributions, and selection effects.

[1]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[2]  Ilya Mandel,et al.  Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments , 2017, 1703.06873.

[3]  Michael Pürrer,et al.  Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries , 2014 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[6]  Sanjib Sharma,et al.  Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy , 2017, 1706.01629.

[7]  M. Fishbach,et al.  Where Are LIGO’s Big Black Holes? , 2017, 1709.08584.

[8]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[9]  Richard O'Shaughnessy,et al.  Reconstructing phenomenological distributions of compact binaries via gravitational wave observations , 2018, Physical Review D.

[10]  C. Stivers Class , 2010 .

[11]  Thomas J. Loredo,et al.  Bayesian astrostatistics: a backward look to the future , 2012, 1208.3036.

[12]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[13]  I. Mandel,et al.  Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.

[14]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[15]  Brian P. Weaver,et al.  Bayesian Methods for the Physical Sciences: Learning from Examples in Astronomy and Physics , 2015 .

[16]  Daniel Foreman-Mackey,et al.  Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.

[17]  Graham Woan,et al.  Detecting Gravitational Radiation from Neutron Stars using a Six‐Parameter Adaptive MCMC Method , 2004 .

[18]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[19]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[20]  A. Abbott Hungary rewards highly cited scientists with bonus grants , 2017, Nature.

[21]  I. Mandel,et al.  Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.

[22]  J. Gair,et al.  Extracting distribution parameters from multiple uncertain observations with selection biases , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[24]  M. Vallisneri,et al.  Bayesian inference for pulsar timing models , 2013, 1310.2606.

[25]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[26]  U. von Toussaint,et al.  Bayesian inference and maximum entropy methods in science and engineering , 2004 .

[27]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[28]  M. Fishbach,et al.  Does the Black Hole Merger Rate Evolve with Redshift? , 2018, The Astrophysical Journal.

[29]  W. Marsden I and J , 2012 .

[30]  Asis Kumar Chattopadhyay,et al.  Statistical Methods for Astronomical Data Analysis , 2014 .

[31]  F. Feroz,et al.  TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.

[32]  J. Gair,et al.  The Mock LISA Data Challenges: from Challenge 1B to Challenge 3 , 2008, 0806.2110.

[33]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[34]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[35]  Y. Wang,et al.  First search for gravitational waves from known pulsars with advanced LIGO , 2017, 1701.07709.

[36]  Eric Thrane,et al.  Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization , 2018, 1801.02699.

[37]  Joseph Hilbe,et al.  Astrostatistical Challenges for the New Astronomy , 2013 .

[38]  Philip Graff,et al.  Use of gravitational waves to probe the formation channels of compact binaries , 2015, 1503.04307.

[39]  Nelson Christensen,et al.  Modelling coloured residual noise in gravitational-wave signal processing , 2008, 0804.3853.

[40]  K. Chatziioannou,et al.  Gravitational-wave astrophysics with effective-spin measurements: Asymmetries and selection biases , 2018, Physical Review D.

[41]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[42]  L. M. M.-T. Theory of Probability , 1929, Nature.

[43]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[44]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.