Approximate explicit constrained linear model predictive control via orthogonal search tree

Solutions to constrained linear model predictive control problems can be precomputed off-line in an explicit form as a piecewise linear state feedback on a polyhedral partition of the state-space, avoiding real-time optimization. We suggest an algorithm that can determine an approximate explicit piecewise linear state feedback by imposing an orthogonal search tree structure on the partition. This leads to a real-time computational complexity that is logarithmic in the number of regions in the partition, and the algorithm yields guarantees on the suboptimality, asymptotic stability and constraint fulfillment.

[1]  T. Johansen,et al.  Computation and approximation of piecewise affine control laws via binary search trees , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[2]  G. Goodwin,et al.  Global analytical model predictive control with input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[3]  T. Johansen,et al.  COMPLEXITY REDUCTION IN EXPLICIT LINEAR MODEL PREDICTIVE CONTROL , 2002 .

[4]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[5]  Tor Arne Johansen,et al.  Approximate explicit model predictive control incorporating heuristics , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[6]  Alberto Bemporad,et al.  The explicit solution of model predictive control via multiparametric quadratic programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[7]  Tor Arne Johansen,et al.  Approximate explicit receding horizon control of constrained nonlinear systems , 2004, Autom..

[8]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[9]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[10]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[11]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[12]  A. Bemporad,et al.  Suboptimal explicit MPC via approximate multiparametric quadratic programming , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[13]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[14]  D. Chmielewski,et al.  On constrained infinite-time linear quadratic optimal control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[15]  T. Johansen,et al.  On explicit suboptimal LQR with state and input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[16]  T. Johansen,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[17]  Tor Arne Johansen,et al.  Explicit sub-optimal linear quadratic regulation with state and input constraints , 2002, Autom..

[18]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[19]  Thomas Parisini,et al.  Neural approximations for multistage optimal control of nonlinear stochastic systems , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[20]  Thomas Parisini,et al.  A receding-horizon regulator for nonlinear systems and a neural approximation , 1995, Autom..

[21]  A. Grancharova,et al.  APPROXIMATE EXPLICIT MODEL PREDICTIVE CONTROL IMPLEMENTED VIA ORTHOGONAL SEARCH TREE PARTITIONING , 2002 .