Characterization of Bending Magnetostriction in Iron-Gallium Alloys for Nanowire Sensor Applications

Abstract : This research explores the possibility of using electrochemically deposited nanowires of magnetostrictive iron-gallium (Galfenol) to mimic the sensing capabilities of biological cilia. Sensor design calls for incorporating Galfenol nanowires cantilevered from a membrane and attached to a conventional magnetic field sensor. As the wires deflect in response to acoustic, air flow, or tactile excitation, the resultant bending stresses induce changes in magnetization that due to the scale of the nanowires offer the potential for excellent spatial resolution and frequency bandwidth. In order to determine the suitability for using Galfenol nanowires in this role, the first task was experimentally characterizing magnetostrictive transduction in bending beam structures, as this means of operation has been unattainable in previous materials research due to low tensile strengths in conventional alloys such as Terfenol-D. Results show that there is an appreciable sensing response from cantilevered Galfenol beams and that this phenomenon can be accurately modeled with an energy based formulation. For progressing experiments to the nanowire scale, a nanomanipulation instrument was designed and constructed that interfaces within a scanning electron microscope and allows for real time characterization of individual wires with diameters near 100 nm. The results of mechanical tensile testing and dynamic resonance identification reveal that the Galfenol nanowires behave similarly to the bulk material with the exception of a large increase in ultimate tensile strength. The magnetic domain structure of the nanowires was theoretically predicted and verified with magnetic force microscopy.

[1]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[2]  M. Graef,et al.  INDUCTION MAPPING OF MAGNETOSTRICTIVE MATERIALS , 1998 .

[3]  J. L. Baldonedo,et al.  Preparation and properties of novel magnetic composite nanostructures : Arrays of nanowires in porous membranes , 2006 .

[4]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[5]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[6]  Marilyn Wun-Fogle,et al.  Magnetostrictive Properties of Galfenol Alloys Under Compressive Stress , 2002 .

[7]  B. Stadler,et al.  Controlling the angular response of magnetoresistance in Co∕Cu multilayered nanowires using Co crystallographic orientation , 2008 .

[8]  Isao Shimoyama,et al.  An air flow sensor modeled on wind receptor hairs of insects , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[9]  Ronald B. Goldfarb,et al.  Demagnetizing factors for cylinders , 1991 .

[10]  Christopher S. Lynch,et al.  Mechanics of Materials and Mechanics of Materials , 1996 .

[11]  Marilyn Wun-Fogle,et al.  Magnetoelastic coupling and ΔE effect in TbxDy1−x single crystals , 1993 .

[12]  S. Griffis EDITOR , 1997, Journal of Navigation.

[13]  D. Viehland,et al.  Structurally Heterogeneous Model of Extrinsic Magnetostriction for Fe-Ga and Similar Magnetic Alloys: Part II. Giant Magnetostriction and Elastic Softening , 2007 .

[14]  Victor Giurgiutiu,et al.  Theoretical and experimental investigation of magnetostrictive composite beams , 2001 .

[15]  M. Wun-Fogle,et al.  Induced Magnetic Anisotropy in Stress-Annealed Galfenol Alloys , 2006, IEEE Transactions on Magnetics.

[16]  Eric Summers,et al.  Magnetic and mechanical properties of polycrystalline Galfenol , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  M. Wun-Fogle,et al.  The effect of magnetic field annealing on single crystal iron gallium alloy , 2008 .

[18]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[19]  Friedrich G Barth,et al.  Spider mechanoreceptors , 2004, Current Opinion in Neurobiology.

[20]  William D. Armstrong,et al.  Magnetization and magnetostriction processes in Tb(0.27−0.30)Dy(0.73−0.70)Fe(1.9−2.0) , 1997 .

[21]  R. Street,et al.  The Interpretation of Magnetic Susceptibility and the ΔE Effect in Terms of Domain Processes , 1958 .

[22]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[23]  Denis Wirtz,et al.  Magnetic tweezers for DNA micromanipulation , 2000 .

[24]  E. Lee,et al.  Magnetostriction and Magnetomechanical Effects , 1955 .

[25]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook , 1995 .

[26]  H. D. Chopra,et al.  Beam model for calculating magnetostriction strains in thin films and multilayers , 2001 .

[27]  Stefan Seelecke,et al.  A unified framework for modeling hysteresis in ferroic materials , 2006 .

[28]  Sheryl Coombs,et al.  Smart Skins: Information Processing by Lateral Line Flow Sensors , 2001, Auton. Robots.

[29]  U. Hartmann,et al.  PROBE CALIBRATION IN MAGNETIC FORCE MICROSCOPY , 1990 .

[30]  J. Chen,et al.  Polyurethane rubber all-polymer artificial hair cell sensor , 2006, Journal of Microelectromechanical Systems.

[31]  C. Tsang,et al.  Design, fabrication and testing of spin-valve read heads for high density recording , 1994 .

[32]  P. D. Manley,et al.  Peripheral Hearing Mechanisms in Reptiles and Birds , 1990, Zoophysiology.

[33]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[34]  Eckhard Quandt,et al.  Giant magnetostrictive spring magnet type multilayers , 1997 .

[35]  Supratik Datta,et al.  A bidirectionally coupled magnetoelastic model and its validation using a Galfenol unimorph sensor , 2008 .

[36]  T. Lograsso,et al.  Tensile properties of magnetostrictive iron–gallium alloys , 2004 .

[37]  T. Lograsso,et al.  Effect of thermal history and gallium content on magneto-mechanical properties of iron gallium alloys , 2006 .

[38]  F. Barth,et al.  Arthropod touch reception: spider hair sensilla as rapid touch detectors , 2001, Journal of Comparative Physiology A.

[39]  Marilyn Wun-Fogle,et al.  Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys , 2003 .

[40]  A. Hubert,et al.  Imaging Magnetic Charges with Magnetic Force Microscopy , 1997 .

[41]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[42]  J. Atulasimha Characterization and Modeling of the Magnetomechanical Behavior of Iron-Gallium Alloys , 2006 .

[43]  Rodney S. Ruoff,et al.  Mechanics of Crystalline Boron Nanowires , 2005 .

[44]  A. Flatau,et al.  The modeling of magnetomechanical sensors in laminated structures , 2008 .

[45]  Alison B. Flatau,et al.  Effect of magnetic field on the mechanical properties of magnetostrictive iron-gallium nanowires , 2008 .

[46]  G. Hadjipanayis,et al.  High Magnetostriction In Low Applied Magnetic Fields In Amorphous Tb-Fe (HARD)/ Fe-B (SOFT) Multilayers. , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[47]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[48]  M. Dijkstra,et al.  Arrays of cricket-inspired sensory hairs with capacitive motion detection , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[49]  Editors , 1986, Brain Research Bulletin.

[50]  R. D. Ford,et al.  Electroacoustics;: The analysis of transduction, and its historical background , 1954 .

[51]  E. H. Frei,et al.  Critical Size and Nucleation Field of Ideal Ferromagnetic Particles , 1957 .

[52]  Y. Tokura,et al.  Ferromagnetic domain structures and nanoclusters in Nd(1/2)Sr(1/2)MnO3. , 2002, Physical review letters.

[53]  Albert Fert,et al.  Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires , 1997 .

[54]  Toshiro Higuchi,et al.  Machining of iron-gallium for microactuator , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[55]  Alison B. Flatau,et al.  Dynamic property determination of magnetostrictive iron-gallium alloys , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[56]  P. Weiss L'hypothèse du champ moléculaire et la propriété ferromagnétique , 1907 .

[57]  Marilyn Wun-Fogle,et al.  Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys , 2000 .

[58]  Andrés,et al.  Elastic properties of individual nanometer-size supported gold clusters. , 1995, Physical review. B, Condensed matter.

[59]  W. Brückner,et al.  Magnetic domains in a textured Co nanowire , 2004 .

[60]  Martin Moskovits,et al.  Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size , 1991 .

[61]  Thomas A. Lograsso,et al.  Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction , 2006 .

[62]  J. Engel,et al.  From artificial hair cell sensor to artificial lateral line system: Development and application , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[63]  R. M. Bozorth,et al.  ANOMALOUS THERMAL EXPANSION AND MAGNETOSTRICTION OF SINGLE-CRYSTAL DYSPROSIUM , 1965 .

[64]  Marilyn Wun-Fogle,et al.  Modern magnetostrictive materials: classical and nonclassical alloys , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[65]  Henry,et al.  Spin accumulation and domain wall magnetoresistance in 35 nm Co wires , 2000, Physical review letters.

[66]  C. Su,et al.  In‐situ Measurement of In‐Plane and Out‐of‐Plane Force Gradient with a Torsional Resonance Mode AFM , 2003 .

[67]  Alison B. Flatau,et al.  Structural magnetic strain model for magnetostrictive transducers , 2000 .

[68]  Alison B. Flatau,et al.  Preliminary Galfenol vibratory gyro-sensor design , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[69]  Stefan Seelecke,et al.  Free energy model for hysteresis in magnetostrictive transducers , 2003 .

[70]  Ru‐Shi Liu,et al.  Highly ordered magnetic multilayer Ni/Cu nanowires , 2006 .

[71]  O. Kohmoto Effective Demagnetizing Factors of Second-Order Magnetocrystalline Anisotropies in Ferromagnetic Resonance Kittel Formula , 2004 .

[72]  R. Kellogg,et al.  Development and modeling of iron-gallium alloys , 2003 .

[73]  J. Engel,et al.  Artificial Lateral Line And Hydrodynamic Object Tracking , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[74]  Chang Liu,et al.  High-Sensitivity Bi-Directional Flow Sensor Based on Biological Inspiration of Animal Haircell Sensors , 2006, 2006 5th IEEE Conference on Sensors.

[75]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[76]  Olivier Durand,et al.  Microstructure of magnetic metallic superlattices grown by electrodeposition in membrane nanopores , 1998 .

[77]  Werner Scholz,et al.  Transition from single-domain to vortex state in soft magnetic cylindrical nanodots , 2002 .

[78]  M. Konagai,et al.  Electron-beam-induced deposition of carbonaceous microstructures using scanning electron microscopy , 1997 .

[79]  Long Ba,et al.  Influence of anodizing conditions on the ordered pore formation in anodic alumina , 2000 .

[80]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[81]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution. , 1997 .

[82]  Marco Tortonese,et al.  Characterization of application-specific probes for SPMs , 1997, Photonics West.

[83]  Yaowu Hao,et al.  Tuning the Properties of Magnetic Nanowires , 2006 .

[84]  J. Miltat,et al.  MFM imaging of nanowires and elongated patterned elements , 2002 .

[85]  Ortrud Kubaschewski,et al.  Iron-binary phase diagrams , 1982 .

[86]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria ( Cupiennius salei Keys.) , 1993 .

[87]  Alison B. Flatau,et al.  Magnetic nanowires for acoustic sensors (invited) , 2006 .

[88]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[89]  John C. Montgomery,et al.  The Enigmatic Lateral Line System , 1999 .

[90]  Manfred Wuttig,et al.  Elasticity and magnetoelasticity of Fe–Ga solid solutions , 2002 .

[91]  J. Rhyne,et al.  MAGNETOSTRICTION OF Tb SINGLE CRYSTALS , 1965 .

[92]  Supratik Datta,et al.  Torque sensing using rolled galfenol patches , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[93]  David Jiles,et al.  Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops , 1989 .

[94]  R. J. Tonucci,et al.  Preparation and Quantitative Magnetic Studies of Single-Domain Nickel Cylinders , 1996 .

[95]  M. Vázquez,et al.  Characterization of cobalt nanowires by means of force microscopy , 2000 .

[96]  Robert D. White,et al.  Design and Characterization of a MEMS Piezoresistive Cochlear-Like Acoustic Sensor , 2002 .

[97]  Ulrich Goesele,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition. , 2000 .

[98]  S. Karthikeyan,et al.  Large Scale Synthesis of Carbon Nanotubes , 2009 .

[99]  L. Abelmann,et al.  On the determination of the internal magnetic structure by magnetic force microscope , 1998 .

[100]  A. Romero,et al.  Vortex state and effect of anisotropy in sub-100-nm magnetic nanodots , 2006 .

[101]  J. Duvail,et al.  Observing magnetic nanowires by means of magnetic force microscopy , 1998 .

[102]  H. Chiriac,et al.  Electrochemical deposition of FeGa/NiFe magnetic multilayered films and nanowire arrays , 2008 .

[103]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[104]  T. Lograsso,et al.  Effect of interstitial additions on magnetostriction in Fe–Ga alloys , 2008 .

[105]  Ralph C. Smith,et al.  Active and structural strain model for magnetostrictive transducers , 1998, Smart Structures.

[106]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[107]  David L. Atherton,et al.  CORRIGENDUM: Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect , 1984 .

[108]  George D. Skidmore,et al.  Quantitative magnetic field measurements with the magnetic force microscope , 1996 .

[109]  J. V. Vleck A Survey of the Theory of Ferromagnetism , 1945 .

[110]  J. Atulasimha,et al.  Modeling of magnetostrictive Galfenol sensor and validation using four point bending test , 2007 .

[111]  J. Pickles An Introduction to the Physiology of Hearing , 1982 .

[112]  C. Cho,et al.  Finite element modeling of magnetostriction for multilayered MEMS devices , 2004 .

[113]  J. Engel,et al.  DEVELOPMENT AND CHARACTERIZATION OF HIGH-SENSITIVITY BIOINSPIRED ARTIFICIAL HAIRCELL SENSOR , 2006 .

[114]  D. Dikin,et al.  Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation , 2003 .

[115]  Marilyn Wun-Fogle,et al.  Magnetoelasticity of Fe–Ga and Fe–Al alloys , 2001 .

[116]  R. Wu Origin of large magnetostriction in FeGa alloys , 2002 .

[117]  S. Na,et al.  Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X=B,C,Mn,Mo,Nb,NbC) alloys , 2008 .

[118]  Hans W. P. Koops,et al.  Characterization and Application of Materials Grown by Electron-Beam-Induced Deposition , 1994 .

[119]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[120]  Kwanyong Seo,et al.  Magnetic properties of single-crystalline CoSi nanowires. , 2007, Nano letters.

[121]  R. C. Hall Single‐Crystal Magnetic Anisotropy and Magnetostriction Studies in Iron‐Base Alloys , 1960 .

[122]  Zhongyang Cheng,et al.  Microbiosensor based on magnetostrictive microcantilever , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[123]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[124]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[125]  Alison B. Flatau,et al.  Effect of stoichiometry on sensing behavior of iron-gallium , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[126]  M. Dapino,et al.  Fully-Coupled Model for 3-D Induction and Strain of Galfenol With Geometry Effects and Applied Currents , 2008 .

[127]  Albert Fert,et al.  Anisotropic transport and magnetic properties of arrays of sub-micron wires , 1997 .