Polarimetric–Anisotropic Decomposition and Anisotropic Entropies of High-Resolution SAR Images

In the booming era of high-resolution synthetic aperture radar (SAR) technology, SAR advanced information retrieval is critical for effective utilization of huge-volume SAR data. One important aspect of high-resolution SAR interpretation is to explore the anisotropic and dispersive information embedded among subaperture and subband SAR images. This paper formulates the polarimetric subaperture analysis as a singular-value decomposition problem, where polarimetric and anisotropic features can be simultaneously decomposed. The decomposed singular values and left singular vectors are equivalent to eigenanalysis-based polarimetric target decomposition, whereas the right singular vectors give the corresponding anisotropic feature vectors. A physics-based parameterization is proposed for anisotropic patterns, where two anisotropic entropy parameters, namely, compactness and directivity, are proposed. Both simulation results and real SAR image analyses demonstrate that these proposed anisotropic entropies can effectively identify specific types of scatterers depending on their geometric scale, curvature, and form of spatial distribution. The proposed anisotropic entropies could be applied to single- and dual-polarization high-resolution SAR data as well.

[1]  Ya-Qiu Jin,et al.  Imaging Simulation of Bistatic Synthetic Aperture Radar and Its Polarimetric Analysis , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[3]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[5]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[6]  Ya-Qiu Jin,et al.  Imaging Simulation of Polarimetric SAR for a Comprehensive Terrain Scene Using the Mapping and Projection Algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Ya-Qiu Jin,et al.  Polarimetric Scattering and SAR Information Retrieval: Jin/Polarimetric Scattering and SAR Information Retrieval , 2013 .

[8]  M. J. Gerry,et al.  A parametric model for synthetic aperture radar measurements , 1999 .

[9]  J. A. Jackson,et al.  Analytic Physical Optics Solution for Bistatic, 3D Scattering From a Dihedral Corner Reflector , 2012, IEEE Transactions on Antennas and Propagation.

[10]  Julie Ann Jackson,et al.  Canonical Scattering Feature Models for 3D and Bistatic SAR , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Cécile Titin-Schnaider Physical Meaning of Bistatic Polarimetric Parameters , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Yoshio Yamaguchi,et al.  On Complete Model-Based Decomposition of Polarimetric SAR Coherency Matrix Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Ya-Qiu Jin,et al.  Target decomposition and recognition from wide-angle SAR imaging based on a Gaussian amplitude-phase model , 2016, Science China Information Sciences.

[14]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[15]  Lee C. Potter,et al.  Attributed scattering centers for SAR ATR , 1997, IEEE Trans. Image Process..

[16]  Ya-Qiu Jin,et al.  Electromagnetic Scattering Modelling for Quantitative Remote Sensing , 1994 .

[17]  Eric Pottier,et al.  Application of the «H / A / α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution , 2000 .

[18]  Laurent Ferro-Famil,et al.  Scatterers characterisation in radar imaging using joint time-frequency analysis and polarimetric coherent decompositions , 2010 .

[19]  Randolph L. Moses,et al.  Synthetic Aperture Radar 3D Feature Extraction for Arbitrary Flight Paths , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Luke Lin,et al.  Data Dome: full k-space sampling data for high-frequency radar research , 2004, SPIE Defense + Commercial Sensing.

[21]  Yaqiu Jin,et al.  Bidirectional Analytic Ray Tracing for Fast Computation of Composite Scattering From Electric-Large Target Over a Randomly Rough Surface , 2009, IEEE Transactions on Antennas and Propagation.

[22]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[23]  Laurent Ferro-Famil,et al.  Nonstationary natural media analysis from polarimetric SAR data using a two-dimensional time-frequency decomposition approach , 2005 .

[24]  R. W. Jansen,et al.  Sub-aperture analysis of high-resolution polarimetric SAR data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[25]  Yingning Peng,et al.  The characteristic polarization states and the equi-power curves , 2002, IEEE Trans. Geosci. Remote. Sens..

[26]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[27]  Laurent Ferro-Famil,et al.  Scene characterization using subaperture polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[28]  Ya-Qiu Jin,et al.  Deorientation theory of polarimetric scattering targets and application to terrain surface classification , 2005, IEEE Trans. Geosci. Remote. Sens..