On Metric Dimensions of Hypercubes

The metric (resp. edge metric or mixed metric) dimension of a graph G, is the cardinality of the smallest ordered set of vertices that uniquely recognizes all the pairs of distinct vertices (resp. edges, or vertices and edges) of G by using a vector of distances to this set. In this note we show two unexpected results on hypercube graphs. First, we show that the metric and edge metric dimension of Qd differ by only one for every integer d. In particular, if d is odd, then the metric and edge metric dimensions of Qd are equal. Second, we prove that the metric and mixed metric dimensions of the hypercube Qd are equal for every d ≥ 3. We conclude the paper by conjecturing that all these three types of metric dimensions of Qd are equal when d is large enough.

[1]  Iztok Peterin,et al.  Edge Metric Dimension of Some Graph Operations , 2019, Bulletin of the Malaysian Mathematical Sciences Society.

[2]  Martin Knor,et al.  A note on the metric and edge metric dimensions of 2-connected graphs , 2021, Discrete Applied Mathematics.

[3]  Nikita Polyanskii,et al.  On the metric dimension of Cartesian powers of a graph , 2017, J. Comb. Theory, Ser. A.

[4]  Tero Laihonen,et al.  The solid-metric dimension , 2020, Theor. Comput. Sci..

[5]  Mirjana Cangalovic,et al.  Symmetry properties of resolving sets and metric bases in hypercubes , 2017, Optim. Lett..

[6]  W. H. Mills,et al.  Determination of a Subset from Certain Combinatorial Properties , 1966, Canadian Journal of Mathematics.

[7]  Jesse Geneson Metric dimension and pattern avoidance in graphs , 2018, ArXiv.

[8]  Gregory Gutin,et al.  Alternative parameterizations of Metric Dimension , 2020, Theor. Comput. Sci..

[9]  Martin Knor,et al.  Graphs with the edge metric dimension smaller than the metric dimension , 2021, Appl. Math. Comput..

[10]  N. Duncan Leaves on trees , 2014 .

[11]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[12]  Riste Skrekovski,et al.  Extremal mixed metric dimension with respect to the cyclomatic number , 2021, Appl. Math. Comput..

[13]  Weili Wu,et al.  On the metric dimension of the folded n-cube , 2020, Optim. Lett..

[14]  S. G. Choi,et al.  On a Combinatorial Problem in Number Theory , 1971 .

[15]  Stephen Becker,et al.  Resolvability of Hamming Graphs , 2020, SIAM J. Discret. Math..

[16]  Ismael González Yero,et al.  Mixed metric dimension of graphs , 2017, Appl. Math. Comput..

[17]  Alain Hertz An IP-based swapping algorithm for the metric dimension and minimal doubly resolving set problems in hypercubes , 2020, Optim. Lett..

[18]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[19]  Sandi Klavzar,et al.  Edge metric dimensions via hierarchical product and integer linear programming , 2021, Optim. Lett..

[20]  Ismael González Yero,et al.  Uniquely identifying the edges of a graph: The edge metric dimension , 2018, Discret. Appl. Math..

[21]  Riste Skrekovski,et al.  Mixed metric dimension of graphs with edge disjoint cycles , 2021, Discret. Appl. Math..