Hydrothermal Synthesis and Crystal Structures of Actinide Compounds

Since the 1950s actinides have been used to benefit industry, science, health, and national security. The largest industrial application, electricity generation from uranium and thorium fuels, is growing worldwide. Thus, more actinides are being mined, produced, used and processed than ever before. The future of nuclear energy hinges on how these increasing amounts of actinides are contained in each stage of the fuel cycle, including disposition. In addition, uranium and plutonium were built up during the Cold War between the United States and the Former Soviet Union for defense purposes and nuclear energy. These stockpiles have been significantly reduced in the last decade.

[1]  E. Staritzky,et al.  Crystallographic Data. 117. Cerium Tetraidodate, Ce(IO3)4 , 1956 .

[2]  B. O. Loopstra,et al.  Uranyl selenite and uranyl tellurite , 1978 .

[3]  P. Burns,et al.  Structures and syntheses of four Np5+ sulfate chain structures: Divergence from U6+ crystal chemistry , 2005 .

[4]  C. Rao,et al.  Isolation of a Zinc Phosphate Primary Building Unit, [C6N2H18]2+[Zn(HPO4)(H2PO4)2]2−, and Its Transformation to an Open-Framework Phosphate, [C6N2H18]2+[Zn3(H2O)4(HPO4)4]2− , 2000 .

[5]  B. Ravel,et al.  Pentavalent uranium oxide via reduction of [UO2]2+ under hydrothermal reaction conditions. , 2008, Inorganic chemistry.

[6]  Sergey V. Krivovichev,et al.  CRYSTAL CHEMISTRY OF URANYL MOLYBDATES. VIII. CRYSTAL STRUCTURES OF Na3Tl3[(UO2)(MoO4)4], Na13−xTl3+x[(UO2)(MoO4)3]4(H2O)6+x (x = 0.1), Na3Tl5[(UO2)(MoO4)3]2(H2O)3 AND Na2[(UO2)(MoO4)2](H2O)4 , 2003 .

[7]  T. Armbruster,et al.  Chiral open-framework uranyl molybdates. 3. Synthesis, structure and the C2221 → P212121 low-temperature phase transition of [C6H16N]2[(UO2)6(MoO4)7(H2O)2](H2O)2 , 2005 .

[8]  P. Burns,et al.  The role of cation–cation interactions in a neptunyl chloride hydrate and topological aspects of neptunyl structural units , 2007 .

[9]  C. Hennig,et al.  Solution coordination chemistry of uranium in the binary UO22+-SO42- and the ternary UO22+-SO42--OH- system , 2000 .

[10]  T. H. Bray,et al.  Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3·H2O, and Th(CrO4)(IO3)2 , 2006 .

[11]  T. Albrecht‐Schmitt,et al.  Cation-cation interactions in neptunyl(V) compounds: hydrothermal preparation and structural characterization of NpO2(IO3) and alpha- and beta-AgNpO2(SeO3). , 2003, Inorganic chemistry.

[12]  Peter C. Burns,et al.  U6+ MINERALS AND INORGANIC COMPOUNDS: INSIGHTS INTO AN EXPANDED STRUCTURAL HIERARCHY OF CRYSTAL STRUCTURES , 2005 .

[13]  S. Krivovichev,et al.  γ-UMo2O8 as a new polymorph of uranium dimolybdate containing tetravalent uranium , 2004 .

[14]  Dermot O'Hare,et al.  Structural diversity in organically templated uranium sulfates , 2003 .

[15]  D. O′Hare,et al.  Controlled structural variations in templated uranium sulfates. , 2003, Inorganic chemistry.

[16]  T. Armbruster,et al.  Chiral open-framework uranyl molybdates. 1. Topological diversity: synthesis and crystal structure of [(CH)NH][(UO)(MoO)(HO)](HO) , 2005 .

[17]  S. Krivovichev,et al.  Synthesis and Crystal Structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 , 2004 .

[18]  R. Haire,et al.  Product evolution in the Np(IV) fluorophosphate system , 2007 .

[19]  S Natarajan,et al.  Aufbau principle of complex open-framework structures of metal phosphates with different dimensionalities. , 2001, Accounts of chemical research.

[20]  S. Skanthakumar,et al.  Hydrothermal synthesis, structure, and magnetic properties of the mixed-valent Np(IV)/Np(V) Selenite Np(NpO2)2(SeO3)3. , 2004, Inorganic chemistry.

[21]  R. A. Jensen,et al.  Cation-cation interactions between uranyl cations in a polar open-framework uranyl periodate. , 2004, Journal of the American Chemical Society.

[22]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[23]  Armel Le Bail,et al.  The room-temperature crystallisation of a one-dimensional gallium fluorophosphate, Ga(HPO4)2F·H3N(CH2)3NH3·2H2O, a precursor to three-dimensional microporous gallium fluorophosphates , 2000 .

[24]  S. Krivovichev,et al.  Synthesis and crystal structures of M 2[(UO 2) 3(SeO 4) 5](H 2O) 16 (M = Co, Zn) , 2005 .

[25]  C. Rao,et al.  Transformations of the low-dimensional zinc phosphates to complex open-framework structures. Part 2:one-dimensional ladder to two- and three-dimensional structures , 2001 .

[26]  Crystal Structure of the Mixed-Valence Neptunium Compound Na6[(NpVO2)2(NpVIO2)(MoO4)5] · 13H2O , 2003 .

[27]  D. Cromer,et al.  The crystal structure of Ce(IO3)4 , 1956 .

[28]  B. Scott,et al.  Synthesis and characterization of f-element iodate architectures with variable dimensionality, alpha- and beta-Am(IO3)3. , 2006, Inorganic chemistry.

[29]  S. Krivovichev,et al.  One-dimensional array of two- and three-center cation-cation bonds in the structure of Li4[(UO2)10O10(Mo2O8)]. , 2007, Inorganic chemistry.

[30]  T. H. Bray,et al.  Capitalizing on differing coordination environments and redox potentials to prepare an ordered heterobimetallic U(VI)/Np(IV) diphosphonate. , 2008, Angewandte Chemie.

[31]  T. H. Bray,et al.  Periodic trends in actinide phosphonates: divergence and convergence between thorium, uranium, neptunium, and plutonium systems. , 2009, Inorganic chemistry.

[32]  T. Armbruster,et al.  Chiral open-framework uranyl molybdates. 2. Flexibility of the U:Mo = 6:7 frameworks: syntheses and , 2005 .

[33]  P. Burns,et al.  NEPTUNYL COMPOUNDS: POLYHEDRON GEOMETRIES, BOND-VALENCE PARAMETERS, AND STRUCTURAL HIERARCHY , 2008 .

[34]  P. Burns,et al.  Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral , 1999 .

[35]  C. Hennig,et al.  The relationship of monodentate and bidentate coordinated uranium(VI) sulfate in aqueous solution , 2008 .

[36]  S. Krivovichev,et al.  A novel open framework uranyl molybdate: synthesis and structure of (NH4)4[(UO2)5(MoO4)7](H2O)5. , 2003, Inorganic chemistry.

[37]  R. Haire,et al.  In situ hydrothermal reduction of neptunium(VI) as a route to neptunium(IV) phosphonates. , 2007, Inorganic chemistry.

[38]  Wei Zhan,et al.  Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: insights provided by uranium and neptunium diphosphonates. , 2008, Inorganic chemistry.

[39]  S. Skanthakumar,et al.  Hydrothermal synthesis, structure, and magnetic properties of Pu(SeO3)2 , 2008 .

[40]  T. Albrecht‐Schmitt,et al.  Low-Dimensional Organically Templated Uranium Fluorides (C5H14N2)2U2F12·2H2O and (C2H10N2)U2F10: Hydrothermal Syntheses, Structures, and Magnetic Properties , 2000 .

[41]  Geoffrey A. Ozin,et al.  A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures , 1998 .

[42]  P. Burns,et al.  The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa5[(UO2)(SO4)4](H2O) , 2002 .

[43]  M. Pruski,et al.  Isomerization of the Prenucleation Building Unit during Crystallization of AlPO4-CJ2: An MQMAS, CP-MQMAS, and HETCOR NMR Study , 1999 .

[44]  P. Burns,et al.  A Novel Uranyl Sulfate Cluster in the Structure of Na6(UO2)(SO4)4(H2O)2 , 2002 .

[45]  S. Krivovichev,et al.  Low‐Dimensional Structural Units in Amine‐Templated Uranyl Oxoselenates(VI): Synthesis and Crystal Structures of [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2, [C4H12N][(UO2)(SeO4)(NO3)], and [C4H14N2][(UO2)(SeO4)2(H2O)] , 2005 .

[46]  S. Krivovichev,et al.  Topology of inorganic complexes as a function of amine molecular structure in layered uranyl selenates , 2006 .

[47]  P. Halasyamani,et al.  New Layered Uranium(VI) Molybdates: Syntheses and Structures of (NH3(CH2)3NH3)(H3O)2(UO2)3(MoO4)5, C(NH2)3(UO2)(OH)(MoO4), (C4H12N2)(UO2)(MoO4)2, and (C5H14N2)(UO2)(MoO4)2·H2O , 1999 .

[48]  A. Zielen,et al.  Specific Interaction between Np(V) and U(VI) in Aqueous Perchloric Acid Media1 , 1961 .

[49]  N. Budantseva,et al.  Peculiarities of complex formation of hexavalent Np and Pu with tetrahedral XO42− oxoanions (X=S, Se, Cr, Mo) , 1998 .

[50]  K. Lii,et al.  K(UO)Si2O6: a pentavalent-uranium silicate. , 2005, Journal of the American Chemical Society.

[51]  Crystal structure of neptunium(V) sulfate hexahydrate, (NpO2)2SO4 · 6H2O , 2006 .

[52]  C. Rao,et al.  Direct in situ observation of increasing structural dimensionality during the hydrothermal formation of open-framework zinc phosphates. , 2001, Chemical communications.

[53]  S. Krivovichev,et al.  Structural chemistry of inorganic actinide compounds , 2007 .

[54]  T. Albrecht‐Schmitt,et al.  Structural Relationships, Interconversion, and Optical Properties of the Uranyl Iodates, UO2(IO3)2 and UO2(IO3)2(H2O): A Comparison of Reactions under Mild and Supercritical Conditions , 2001 .

[55]  B. Scott,et al.  Structural and spectroscopic trends in actinyl iodates of uranium, neptunium, and plutonium. , 2003, Inorganic chemistry.

[56]  K. Lii,et al.  K3(U3O6)(Si2O7) and Rb3(U3O6)(Ge2O7): a pentavalent-uranium silicate and germanate. , 2008, Inorganic chemistry.

[57]  P. Burns,et al.  Crystal Structures and Magnetic Properties of NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO4H2O: Cation−Cation Interactions in a Neptunyl Sulfate Framework , 2006 .

[58]  Z. Assefa,et al.  Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3 , 2004 .

[59]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[60]  P. Burns,et al.  Synthesis, structure determination, and infrared spectroscopy of (NpO2)2(SO4)(H2O)4: Prevalence of cation–cation interactions and cationic nets in neptunyl sulfate compounds , 2009 .

[61]  P. Burns,et al.  Ba(NpO2)(PO4)(H2O), its relationship to the uranophane group, and implications for Np incorporation in uranyl minerals , 2006 .

[62]  T. J. Wolery,et al.  Precipitation of crystalline neptunium dioxide from near-neutral aqueous solution , 2003 .

[63]  D. O′Hare,et al.  Exploration of composition space in templated uranium sulfates. , 2003, Inorganic chemistry.

[64]  T. Srinivasan,et al.  Hydrolysis of neptunium(V) at variable temperatures (10–85°C) , 2004 .

[65]  S. Krivovichev,et al.  Nanostructured actinide compounds , 2007 .

[66]  P. Burns,et al.  Cation−Cation Interactions and Antiferromagnetism in Na[Np(V)O2(OH)2]: Synthesis, Structure, and Magnetic Properties , 2007 .

[67]  Walter Leitner,et al.  Chemical synthesis using supercritical fluids , 1999 .

[68]  P. Burns,et al.  Syntheses, structures, magnetic properties, and X-ray absorption spectra of carnotite-type uranyl chromium(V) oxides: A[(UO2)2Cr2O8](H2O)n (A = K2, Rb2, Cs2, Mg; N = 0, 4) , 2004 .

[69]  L. B. Werner,et al.  The First Isolation of Plutonium , 1949 .