Hydrothermal Synthesis and Crystal Structures of Actinide Compounds
暂无分享,去创建一个
[1] E. Staritzky,et al. Crystallographic Data. 117. Cerium Tetraidodate, Ce(IO3)4 , 1956 .
[2] B. O. Loopstra,et al. Uranyl selenite and uranyl tellurite , 1978 .
[3] P. Burns,et al. Structures and syntheses of four Np5+ sulfate chain structures: Divergence from U6+ crystal chemistry , 2005 .
[4] C. Rao,et al. Isolation of a Zinc Phosphate Primary Building Unit, [C6N2H18]2+[Zn(HPO4)(H2PO4)2]2−, and Its Transformation to an Open-Framework Phosphate, [C6N2H18]2+[Zn3(H2O)4(HPO4)4]2− , 2000 .
[5] B. Ravel,et al. Pentavalent uranium oxide via reduction of [UO2]2+ under hydrothermal reaction conditions. , 2008, Inorganic chemistry.
[6] Sergey V. Krivovichev,et al. CRYSTAL CHEMISTRY OF URANYL MOLYBDATES. VIII. CRYSTAL STRUCTURES OF Na3Tl3[(UO2)(MoO4)4], Na13−xTl3+x[(UO2)(MoO4)3]4(H2O)6+x (x = 0.1), Na3Tl5[(UO2)(MoO4)3]2(H2O)3 AND Na2[(UO2)(MoO4)2](H2O)4 , 2003 .
[7] T. Armbruster,et al. Chiral open-framework uranyl molybdates. 3. Synthesis, structure and the C2221 → P212121 low-temperature phase transition of [C6H16N]2[(UO2)6(MoO4)7(H2O)2](H2O)2 , 2005 .
[8] P. Burns,et al. The role of cation–cation interactions in a neptunyl chloride hydrate and topological aspects of neptunyl structural units , 2007 .
[9] C. Hennig,et al. Solution coordination chemistry of uranium in the binary UO22+-SO42- and the ternary UO22+-SO42--OH- system , 2000 .
[10] T. H. Bray,et al. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)(SeO4), Th(IO3)2(SeO4)(H2O)3·H2O, and Th(CrO4)(IO3)2 , 2006 .
[11] T. Albrecht‐Schmitt,et al. Cation-cation interactions in neptunyl(V) compounds: hydrothermal preparation and structural characterization of NpO2(IO3) and alpha- and beta-AgNpO2(SeO3). , 2003, Inorganic chemistry.
[12] Peter C. Burns,et al. U6+ MINERALS AND INORGANIC COMPOUNDS: INSIGHTS INTO AN EXPANDED STRUCTURAL HIERARCHY OF CRYSTAL STRUCTURES , 2005 .
[13] S. Krivovichev,et al. γ-UMo2O8 as a new polymorph of uranium dimolybdate containing tetravalent uranium , 2004 .
[14] Dermot O'Hare,et al. Structural diversity in organically templated uranium sulfates , 2003 .
[15] D. O′Hare,et al. Controlled structural variations in templated uranium sulfates. , 2003, Inorganic chemistry.
[16] T. Armbruster,et al. Chiral open-framework uranyl molybdates. 1. Topological diversity: synthesis and crystal structure of [(CH)NH][(UO)(MoO)(HO)](HO) , 2005 .
[17] S. Krivovichev,et al. Synthesis and Crystal Structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 , 2004 .
[18] R. Haire,et al. Product evolution in the Np(IV) fluorophosphate system , 2007 .
[19] S Natarajan,et al. Aufbau principle of complex open-framework structures of metal phosphates with different dimensionalities. , 2001, Accounts of chemical research.
[20] S. Skanthakumar,et al. Hydrothermal synthesis, structure, and magnetic properties of the mixed-valent Np(IV)/Np(V) Selenite Np(NpO2)2(SeO3)3. , 2004, Inorganic chemistry.
[21] R. A. Jensen,et al. Cation-cation interactions between uranyl cations in a polar open-framework uranyl periodate. , 2004, Journal of the American Chemical Society.
[22] Lester R. Morss,et al. The chemistry of the actinide and transactinide elements , 2006 .
[23] Armel Le Bail,et al. The room-temperature crystallisation of a one-dimensional gallium fluorophosphate, Ga(HPO4)2F·H3N(CH2)3NH3·2H2O, a precursor to three-dimensional microporous gallium fluorophosphates , 2000 .
[24] S. Krivovichev,et al. Synthesis and crystal structures of M 2[(UO 2) 3(SeO 4) 5](H 2O) 16 (M = Co, Zn) , 2005 .
[25] C. Rao,et al. Transformations of the low-dimensional zinc phosphates to complex open-framework structures. Part 2:one-dimensional ladder to two- and three-dimensional structures , 2001 .
[26] Crystal Structure of the Mixed-Valence Neptunium Compound Na6[(NpVO2)2(NpVIO2)(MoO4)5] · 13H2O , 2003 .
[27] D. Cromer,et al. The crystal structure of Ce(IO3)4 , 1956 .
[28] B. Scott,et al. Synthesis and characterization of f-element iodate architectures with variable dimensionality, alpha- and beta-Am(IO3)3. , 2006, Inorganic chemistry.
[29] S. Krivovichev,et al. One-dimensional array of two- and three-center cation-cation bonds in the structure of Li4[(UO2)10O10(Mo2O8)]. , 2007, Inorganic chemistry.
[30] T. H. Bray,et al. Capitalizing on differing coordination environments and redox potentials to prepare an ordered heterobimetallic U(VI)/Np(IV) diphosphonate. , 2008, Angewandte Chemie.
[31] T. H. Bray,et al. Periodic trends in actinide phosphonates: divergence and convergence between thorium, uranium, neptunium, and plutonium systems. , 2009, Inorganic chemistry.
[32] T. Armbruster,et al. Chiral open-framework uranyl molybdates. 2. Flexibility of the U:Mo = 6:7 frameworks: syntheses and , 2005 .
[33] P. Burns,et al. NEPTUNYL COMPOUNDS: POLYHEDRON GEOMETRIES, BOND-VALENCE PARAMETERS, AND STRUCTURAL HIERARCHY , 2008 .
[34] P. Burns,et al. Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral , 1999 .
[35] C. Hennig,et al. The relationship of monodentate and bidentate coordinated uranium(VI) sulfate in aqueous solution , 2008 .
[36] S. Krivovichev,et al. A novel open framework uranyl molybdate: synthesis and structure of (NH4)4[(UO2)5(MoO4)7](H2O)5. , 2003, Inorganic chemistry.
[37] R. Haire,et al. In situ hydrothermal reduction of neptunium(VI) as a route to neptunium(IV) phosphonates. , 2007, Inorganic chemistry.
[38] Wei Zhan,et al. Further examples of the failure of surrogates to properly model the structural and hydrothermal chemistry of transuranium elements: insights provided by uranium and neptunium diphosphonates. , 2008, Inorganic chemistry.
[39] S. Skanthakumar,et al. Hydrothermal synthesis, structure, and magnetic properties of Pu(SeO3)2 , 2008 .
[40] T. Albrecht‐Schmitt,et al. Low-Dimensional Organically Templated Uranium Fluorides (C5H14N2)2U2F12·2H2O and (C2H10N2)U2F10: Hydrothermal Syntheses, Structures, and Magnetic Properties , 2000 .
[41] Geoffrey A. Ozin,et al. A New Model for Aluminophosphate Formation: Transformation of a Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures , 1998 .
[42] P. Burns,et al. The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa5[(UO2)(SO4)4](H2O) , 2002 .
[43] M. Pruski,et al. Isomerization of the Prenucleation Building Unit during Crystallization of AlPO4-CJ2: An MQMAS, CP-MQMAS, and HETCOR NMR Study , 1999 .
[44] P. Burns,et al. A Novel Uranyl Sulfate Cluster in the Structure of Na6(UO2)(SO4)4(H2O)2 , 2002 .
[45] S. Krivovichev,et al. Low‐Dimensional Structural Units in Amine‐Templated Uranyl Oxoselenates(VI): Synthesis and Crystal Structures of [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2, [C4H12N][(UO2)(SeO4)(NO3)], and [C4H14N2][(UO2)(SeO4)2(H2O)] , 2005 .
[46] S. Krivovichev,et al. Topology of inorganic complexes as a function of amine molecular structure in layered uranyl selenates , 2006 .
[47] P. Halasyamani,et al. New Layered Uranium(VI) Molybdates: Syntheses and Structures of (NH3(CH2)3NH3)(H3O)2(UO2)3(MoO4)5, C(NH2)3(UO2)(OH)(MoO4), (C4H12N2)(UO2)(MoO4)2, and (C5H14N2)(UO2)(MoO4)2·H2O , 1999 .
[48] A. Zielen,et al. Specific Interaction between Np(V) and U(VI) in Aqueous Perchloric Acid Media1 , 1961 .
[49] N. Budantseva,et al. Peculiarities of complex formation of hexavalent Np and Pu with tetrahedral XO42− oxoanions (X=S, Se, Cr, Mo) , 1998 .
[50] K. Lii,et al. K(UO)Si2O6: a pentavalent-uranium silicate. , 2005, Journal of the American Chemical Society.
[51] Crystal structure of neptunium(V) sulfate hexahydrate, (NpO2)2SO4 · 6H2O , 2006 .
[52] C. Rao,et al. Direct in situ observation of increasing structural dimensionality during the hydrothermal formation of open-framework zinc phosphates. , 2001, Chemical communications.
[53] S. Krivovichev,et al. Structural chemistry of inorganic actinide compounds , 2007 .
[54] T. Albrecht‐Schmitt,et al. Structural Relationships, Interconversion, and Optical Properties of the Uranyl Iodates, UO2(IO3)2 and UO2(IO3)2(H2O): A Comparison of Reactions under Mild and Supercritical Conditions , 2001 .
[55] B. Scott,et al. Structural and spectroscopic trends in actinyl iodates of uranium, neptunium, and plutonium. , 2003, Inorganic chemistry.
[56] K. Lii,et al. K3(U3O6)(Si2O7) and Rb3(U3O6)(Ge2O7): a pentavalent-uranium silicate and germanate. , 2008, Inorganic chemistry.
[57] P. Burns,et al. Crystal Structures and Magnetic Properties of NaK3(NpO2)4(SO4)4(H2O)2 and NaNpO2SO4H2O: Cation−Cation Interactions in a Neptunyl Sulfate Framework , 2006 .
[58] Z. Assefa,et al. Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3 , 2004 .
[59] A. Bard,et al. Standard Potentials in Aqueous Solution , 1985 .
[60] P. Burns,et al. Synthesis, structure determination, and infrared spectroscopy of (NpO2)2(SO4)(H2O)4: Prevalence of cation–cation interactions and cationic nets in neptunyl sulfate compounds , 2009 .
[61] P. Burns,et al. Ba(NpO2)(PO4)(H2O), its relationship to the uranophane group, and implications for Np incorporation in uranyl minerals , 2006 .
[62] T. J. Wolery,et al. Precipitation of crystalline neptunium dioxide from near-neutral aqueous solution , 2003 .
[63] D. O′Hare,et al. Exploration of composition space in templated uranium sulfates. , 2003, Inorganic chemistry.
[64] T. Srinivasan,et al. Hydrolysis of neptunium(V) at variable temperatures (10–85°C) , 2004 .
[65] S. Krivovichev,et al. Nanostructured actinide compounds , 2007 .
[66] P. Burns,et al. Cation−Cation Interactions and Antiferromagnetism in Na[Np(V)O2(OH)2]: Synthesis, Structure, and Magnetic Properties , 2007 .
[67] Walter Leitner,et al. Chemical synthesis using supercritical fluids , 1999 .
[68] P. Burns,et al. Syntheses, structures, magnetic properties, and X-ray absorption spectra of carnotite-type uranyl chromium(V) oxides: A[(UO2)2Cr2O8](H2O)n (A = K2, Rb2, Cs2, Mg; N = 0, 4) , 2004 .
[69] L. B. Werner,et al. The First Isolation of Plutonium , 1949 .