Identification of Ny-Eso-1 Epitopes Presented by Human Histocompatibility Antigen (Hla)-Drb4*0101–0103 and Recognized by Cd4+T Lymphocytes of Patients with Ny-Eso-1–Expressing Melanoma

NY-ESO-1 is a member of the cancer-testis family of tumor antigens that elicits strong humoral and cellular immune responses in patients with NY-ESO-1–expressing cancers. Since CD4+ T lymphocytes play a critical role in generating antigen-specific cytotoxic T lymphocyte and antibody responses, we searched for NY-ESO-1 epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules. Autologous monocyte-derived dendritic cells of cancer patients were incubated with recombinant NY-ESO-1 protein and used in enzyme-linked immunospot (ELISPOT) assays to detect NY-ESO-1–specific CD4+ T lymphocyte responses. To identify possible epitopes presented by distinct HLA class II alleles, overlapping 18-mer peptides derived from NY-ESO-1 were synthetized and tested for recognition by CD4+ T lymphocytes in autologous settings. We identified three NY-ESO-1–derived peptides presented by DRB4*0101–0103 and recognized by CD4+ T lymphocytes of two melanoma patients sharing these HLA class II alleles. Specificity of recognition was confirmed by proliferation assays. The characterization of HLA class II–restricted epitopes will be useful for the assessment of spontaneous and vaccine-induced immune responses of cancer patients against defined tumor antigens. Further, the therapeutic efficacy of active immunization using antigenic HLA class I–restricted peptides may be improved by adding HLA class II–presented epitopes.

[1]  D. Jäger,et al.  Humoral immune responses of cancer patients against "Cancer-Testis" antigen NY-ESO-1: correlation with clinical events. , 1999, International journal of cancer.

[2]  Matteo Bellone,et al.  Melanoma Cells Present a MAGE-3 Epitope to CD4+ Cytotoxic T Cells in Association with Histocompatibility Leukocyte Antigen DR11 , 1999, The Journal of experimental medicine.

[3]  J. Shabanowitz,et al.  Biochemical Identification of a Mutated Human Melanoma Antigen Recognized by CD4+ T Cells , 1999, The Journal of experimental medicine.

[4]  P. Coulie,et al.  Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE‐3 and presented by HLA‐A1 , 1999, International journal of cancer.

[5]  D. Pardoll,et al.  The role of CD4+ T cell responses in antitumor immunity. , 1998, Current opinion in immunology.

[6]  Richard A. Flavell,et al.  Help for cytotoxic-T-cell responses is mediated by CD40 signalling , 1998, Nature.

[7]  Stephen P. Schoenberger,et al.  T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions , 1998, Nature.

[8]  Lloyd J. Old,et al.  A Survey of the Humoral Immune Response of Cancer Patients to a Panel of Human Tumor Antigens , 1998, The Journal of experimental medicine.

[9]  C. Melief,et al.  Specific T Helper Cell Requirement for Optimal Induction of Cytotoxic T Lymphocytes against Major Histocompatibility Complex Class II Negative Tumors , 1998, The Journal of experimental medicine.

[10]  D. Jäger,et al.  Simultaneous Humoral and Cellular Immune Response against Cancer–Testis Antigen NY-ESO-1: Definition of Human Histocompatibility Leukocyte Antigen (HLA)-A2–binding Peptide Epitopes , 1998, The Journal of experimental medicine.

[11]  T. Blankenstein,et al.  B cells inhibit induction of T cell-dependent tumor immunity , 1998, Nature Medicine.

[12]  W. Heath,et al.  Induction of a CD8+ Cytotoxic T Lymphocyte Response by Cross-priming Requires Cognate CD4+ T Cell Help , 1997, The Journal of experimental medicine.

[13]  Yao-Tseng Chen,et al.  A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Rosenberg Development of cancer immunotherapies based on identification of the genes encoding cancer regression antigens. , 1996, Journal of the National Cancer Institute.

[15]  G. Schuler,et al.  High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10 [published erratum appears in J Exp Med 1996 Oct 1;184(4):following 1590] , 1996, The Journal of experimental medicine.

[16]  A. Lanzavecchia,et al.  Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation , 1996, The Journal of experimental medicine.

[17]  A Sette,et al.  Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes , 1996, The Journal of experimental medicine.

[18]  J. Karbach,et al.  Generation of cytotoxic T‐cell responses with synthetic melanoma‐associated peptides in vivo: Implications for tumor vaccines with melanoma‐associated antigens , 1996, International journal of cancer.

[19]  S. Rosenberg,et al.  Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Hsieh,et al.  Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. , 1993, Science.

[21]  C. Melief,et al.  Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. , 1992, Advances in cancer research.

[22]  W. Kast,et al.  Cooperation between cytotoxic and helper T lymphocytes in protection against lethal Sendai virus infection. Protection by T cells is MHC- restricted and MHC-regulated; a model for MHC-disease associations , 1986, The Journal of experimental medicine.

[23]  P. Greenberg,et al.  Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2- T cells. Tumor eradication does not require participation of cytotoxic T cells , 1985, The Journal of experimental medicine.