Catalytic asymmetric addition of aldehydes to oxocarbenium ions: a dual catalytic system for the synthesis of chromenes.

A synergistic catalytic system for the first asymmetric addition of aldehydes to in situ generated prochiral oxocarbenium ions has been developed. The dual catalytic protocol allows the simultaneous activation of both electrophile and nucleophile and provides access to a variety of valuable chiral 2H-chromenes with excellent enantioselectivities.

[1]  M. Bandini,et al.  Gold meets enamine catalysis in the enantioselective α-allylic alkylation of aldehydes with alcohols , 2012 .

[2]  V. Ratovelomanana-Vidal,et al.  Enantioselective metallo-organocatalyzed preparation of cyclopentanes bearing an all-carbon quaternary stereocenter. , 2012, Chemical communications.

[3]  H. Mayr,et al.  Imidazolidinone-derived enamines: nucleophiles with low reactivity. , 2012, Angewandte Chemie.

[4]  Jian Xiao Merging organocatalysis with transition metal catalysis: highly stereoselective α-alkylation of aldehydes. , 2012, Organic letters.

[5]  B. List,et al.  Asymmetric spiroacetalization catalysed by confined Brønsted acids , 2012, Nature.

[6]  D. MacMillan,et al.  Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development. , 2012, Chemical science.

[7]  Prantik Maity,et al.  Controlling Enantioselectivity in Additions to Cyclic Oxocarbenium Ions via Transition Metal Catalysis. , 2012, Synlett : accounts and rapid communications in synthetic organic chemistry.

[8]  Prantik Maity,et al.  Copper-catalyzed enantioselective additions to oxocarbenium ions: alkynylation of isochroman acetals. , 2011, Journal of the American Chemical Society.

[9]  E. Jacobsen,et al.  Dual catalysis in enantioselective oxidopyrylium-based [5 + 2] cycloadditions. , 2011, Journal of the American Chemical Society.

[10]  P. Cozzi,et al.  Highly enantioselective α alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate: a formal organocatalytic α alkylation of aldehydes by the carbenium ion. , 2011, Angewandte Chemie.

[11]  Paul Ha-Yeon Cheong,et al.  Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities. , 2011, Chemical reviews.

[12]  Y. Yamashita,et al.  Lewis Acid‐Mediated Acetal Substitution Reactions: Mechanism and Application to Asymmetric Catalysis , 2011 .

[13]  P. Cozzi,et al.  S(N)1-type reactions in the presence of water: indium(III)-promoted highly enantioselective organocatalytic propargylation of aldehydes. , 2011, Chemistry.

[14]  Y. Miyake,et al.  Cooperative Catalytic Reactions Using Lewis Acids and Organocatalysts: Enantioselective Propargylic Alkylation of Propargylic Alcohols Bearing an Internal Alkyne with Aldehydes , 2011 .

[15]  M. Rueping,et al.  Chiral organic contact ion pairs in metal-free catalytic asymmetric allylic substitutions. , 2011, Journal of the American Chemical Society.

[16]  Y. Miyake,et al.  Cooperative catalytic reactions using organocatalysts and transition metal catalysts: enantioselective propargylic alkylation of propargylic esters with aldehydes. , 2011, Organic letters.

[17]  P. Melchiorre,et al.  Cooperative organocatalysis for the asymmetric γ alkylation of α-branched enals. , 2010, Angewandte Chemie.

[18]  B. List,et al.  Kinetic resolution of homoaldols via catalytic asymmetric transacetalization. , 2010, Journal of the American Chemical Society.

[19]  L. Zoli,et al.  Merging organocatalysis with an indium(III)-mediated process: a stereoselective α-alkylation of aldehydes with allylic alcohols. , 2010, Chemistry.

[20]  S. Schaus,et al.  Enantioselective addition of boronates to chromene acetals catalyzed by a chiral Brønsted acid/Lewis acid system. , 2010, Angewandte Chemie.

[21]  M. Rueping,et al.  Unifying metal and Brønsted acid catalysis--concepts, mechanisms, and classifications. , 2010, Chemistry.

[22]  B. List,et al.  Catalytic asymmetric transacetalization. , 2010, Journal of the American Chemical Society.

[23]  K. Houk,et al.  Nature of intermediates in organo-SOMO catalysis of alpha-arylation of aldehydes. , 2010, Journal of the American Chemical Society.

[24]  D. Seebach,et al.  Experimental and Theoretical Conformational Analysis of 5‐Benzylimidazolidin‐4‐one Derivatives – a ‘Playground’ for Studying Dispersion Interactions and a ‘Windshield‐Wiper’ Effect in Organocatalysis , 2010 .

[25]  Y. Tu,et al.  Brønsted Acid catalyzed enantioselective semipinacol rearrangement for the synthesis of chiral spiroethers. , 2009, Angewandte Chemie.

[26]  Hong C Shen Asymmetric synthesis of chiral chromans , 2009 .

[27]  M. Terada,et al.  Enantioselective direct aldol-type reaction of azlactone via protonation of vinyl ethers by a chiral Brønsted acid catalyst. , 2009, Journal of the American Chemical Society.

[28]  L. Zoli,et al.  Organocatalytic asymmetric alkylation of aldehydes by S(N)1-type reaction of alcohols. , 2009, Angewandte Chemie.

[29]  M. Ebert,et al.  5‐Benzyl‐3‐methylimidazolidin‐4‐one‐Derived Reactive Intermediates of Organocatalysis – A Comforting Resemblance of X‐Ray, NMR, and DFT Solid‐Phase, Liquid‐Phase, and Gas‐Phase Structures , 2009 .

[30]  J. Platts,et al.  Solution phase, solid state, and theoretical investigations on the MacMillan imidazolidinone. , 2009, Organic letters.

[31]  A. Mazzanti,et al.  Proline-catalyzed asymmetric formal alpha-alkylation of aldehydes via vinylogous iminium ion intermediates generated from arylsulfonyl indoles. , 2008, Angewandte Chemie.

[32]  Armando Carlone,et al.  Asymmetric aminocatalysis--gold rush in organic chemistry. , 2008, Angewandte Chemie.

[33]  M. Sodeoka,et al.  Catalytic enantioselective aldol-type reaction of beta-ketosters with acetals. , 2008, Angewandte Chemie.

[34]  S. Reisman,et al.  Enantioselective thiourea-catalyzed additions to oxocarbenium ions. , 2008, Journal of the American Chemical Society.

[35]  C. Barbas Organocatalysis lost: modern chemistry, ancient chemistry, and an unseen biosynthetic apparatus. , 2008, Angewandte Chemie.

[36]  S. Mukherjee,et al.  Asymmetric enamine catalysis. , 2007, Chemical reviews.

[37]  D. MacMillan,et al.  Modern strategies in organic catalysis: The advent and development of iminium activation , 2006 .

[38]  P. Schreiner,et al.  Acid-free, organocatalytic acetalization , 2006 .

[39]  S. Gellman,et al.  Enantioselective organocatalytic Michael additions of aldehydes to enones with imidazolidinones: cocatalyst effects and evidence for an enamine intermediate. , 2005, Journal of the American Chemical Society.

[40]  R. J. Thomson,et al.  Ni(II) Tol-BINAP-catalyzed enantioselective orthoester alkylations of N-acylthiazolidinethiones. , 2005, Journal of the American Chemical Society.

[41]  I. Mangion,et al.  The importance of iminium geometry control in enamine catalysis: identification of a new catalyst architecture for aldehyde-aldehyde couplings. , 2004, Angewandte Chemie.

[42]  M. Braun,et al.  Titanium(IV)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation. , 2004, Angewandte Chemie.

[43]  F. Tanaka,et al.  Rapid fluorescent screening for bifunctional amine-acid catalysts: efficient syntheses of quaternary carbon-containing aldols under organocatalysis. , 2003, Organic Letters.

[44]  Nick A. Paras,et al.  New strategies in organic catalysis: the first enantioselective organocatalytic Friedel-Crafts alkylation. , 2001, Journal of the American Chemical Society.

[45]  Helen J. Mitchell,et al.  Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans , 2000 .

[46]  John J. M. Wiener,et al.  New Strategies for Organic Catalysis: The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition , 2000 .

[47]  I. Solodin 5-Substituted (5S)-imidazolidin-4-ones as effective chiral auxiliary for hydrogenation of α-keto amides , 1992 .

[48]  E. Lukevics,,et al.  (5S)-5-benzyl-2,2,3-trimethylimidazoiidin-4-one as a highly effective chiral auxiliary for asymmetric reduction of α-oxo amides , 1990 .