Effect of 3-O-acetylaleuritolic acid from in vitro-cultured Drosera spatulata on cancer cells survival and migration

[1]  T. Kwon,et al.  Controlling metastatic cancer: the role of phytochemicals in cell signaling , 2019, Journal of Cancer Research and Clinical Oncology.

[2]  J. Quiles,et al.  Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. , 2019, Antioxidants & redox signaling.

[3]  Han-dong Wang,et al.  Baicalin suppresses proliferation, migration, and invasion in human glioblastoma cells via Ca2+-dependent pathway , 2018, Drug design, development and therapy.

[4]  Ai-Qin Jiang,et al.  FAK inhibitors in Cancer, a patent review , 2018, Expert opinion on therapeutic patents.

[5]  Yuqing Ge,et al.  Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway. , 2018, Journal of ethnopharmacology.

[6]  Z. Lasabová,et al.  Are plant-based functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[7]  V. Weaver,et al.  Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. , 2016, Trends in cell biology.

[8]  K. Hodivala-Dilke,et al.  Molecular Pathways: Endothelial Cell FAK—A Target for Cancer Treatment , 2016, Clinical Cancer Research.

[9]  Andrew G. Clark,et al.  Modes of cancer cell invasion and the role of the microenvironment. , 2015, Current opinion in cell biology.

[10]  M. Zehl,et al.  Flavonoids as chemotaxonomic markers in the genus Drosera. , 2015, Phytochemistry.

[11]  Chih-min Yang,et al.  Alpha-carotene inhibits metastasis in Lewis lung carcinoma in vitro, and suppresses lung metastasis and tumor growth in combination with taxol in tumor xenografted C57BL/6 mice. , 2015, The Journal of nutritional biochemistry.

[12]  Lih‐Chyang Chen,et al.  Emerging Roles of Focal Adhesion Kinase in Cancer , 2015, BioMed research international.

[13]  Keduo Qian,et al.  Recent Progress on C‐4‐Modified Podophyllotoxin Analogs as Potent Antitumor Agents , 2015, Medicinal research reviews.

[14]  C. Simmler,et al.  Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay , 2014, Journal of medicinal chemistry.

[15]  U. R. Michaelis,et al.  Mechanisms of endothelial cell migration , 2014, Cellular and Molecular Life Sciences.

[16]  A. Thorburn,et al.  Autophagy and Cancer Therapy , 2014, Molecular Pharmacology.

[17]  Chun-Hua Wang,et al.  Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. , 2014, The American journal of Chinese medicine.

[18]  E. Wiechec,et al.  Cell adhesion molecules and their relation to (cancer) cell stemness. , 2014, Carcinogenesis.

[19]  N. Lisiak,et al.  Methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL), a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MDA-MB-231 breast cancer cells. , 2014, Chemico-biological interactions.

[20]  B. Ngadjui,et al.  Chemical Constituents of Croton oligandrum (Euphorbiaceae) , 2014, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[21]  P. Egan,et al.  Phytochemistry of the Carnivorous Sundew Genus Drosera (Droseraceae) – Future Perspectives and Ethnopharmacological Relevance , 2013, Chemistry & biodiversity.

[22]  Z. Gong,et al.  The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. , 2013, Biochimica et biophysica acta.

[23]  T. Speck,et al.  Trap diversity and evolution in the family Droseraceae , 2013, Plant signaling & behavior.

[24]  K. R. Wirasutisna,et al.  ISOLATION AND CHARACTERIZATION OF 3-ACETYL ALEURITOLIC ACID AND SCOPOLETIN FROM STEM BARK OF ALEURITES MOLUCCANA (L.) WILLD , 2013 .

[25]  L. Ouyang,et al.  Plant natural compounds: targeting pathways of autophagy as anti‐cancer therapeutic agents , 2012, Cell proliferation.

[26]  Shengbing Huang,et al.  The Role of Autophagy in Cancer: Therapeutic Implications , 2011, Molecular Cancer Therapeutics.

[27]  J. Guan,et al.  Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. , 2011, Advanced drug delivery reviews.

[28]  Uwe Beifuss,et al.  Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC–DAD, LC–NMR, NMR, and LC–MS , 2011, Analytical and bioanalytical chemistry.

[29]  Peter J. Parker,et al.  An aPKC-Exocyst Complex Controls Paxillin Phosphorylation and Migration through Localised JNK1 Activation , 2009, PLoS biology.

[30]  H. Oike,et al.  Drosera rotundifolia and Drosera tokaiensis suppress the activation of HMC-1 human mast cells. , 2009, Journal of ethnopharmacology.

[31]  V. Golubovskaya,et al.  Focal adhesion kinase and cancer. , 2009, Histology and histopathology.

[32]  N. Lall,et al.  Purified compounds and extracts from Euclea species with antimycobacterial activity against Mycobacterium bovis and fast-growing mycobacteria. , 2008, Biological & pharmaceutical bulletin.

[33]  N. Lall,et al.  Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. , 2008, Journal of ethnopharmacology.

[34]  Reiko Tanaka,et al.  Isolation, DNA Topoisomerase‐II Inhibition, and Cytotoxicity of Three New Terpenoids from the Bark of Macaranga tanarius , 2006, Chemistry & biodiversity.

[35]  L. Krenn,et al.  In vitro Antispasmodic and Antiinflammatory Effects of Drosera rotundifolia , 2004, Arzneimittelforschung.

[36]  R. Braz-Filho,et al.  Antimicrobial activity and chemical investigation of Brazilian Drosera. , 2004, Memorias do Instituto Oswaldo Cruz.

[37]  K. Ueda,et al.  Life history traits and coexistence of an amphidiploid, Drosera tokaiensis, and its parental species, D. rotundifolia and D. spatulata (Droseraceae) , 2004 .

[38]  K. Kondo,et al.  Effects of Macro-components and Sucrose in the Medium on in vitro Red-color Pigmentation in Dionaea muscipula Ellis and Drosera spathulata Labill , 1999 .

[39]  J. Budzianowski Naphthoquinones of Drosera spathulata from in vitro cultures , 1995 .

[40]  A. Culham,et al.  The taxonomic significance of naphthoquinones in the Droseraceae , 1994 .

[41]  J. Budzianowski,et al.  PHENOLIC COMPOUNDS OF DROSERA INTERMEDIA AND D. SPATHULATA FROM IN VITRO CULTURES , 1993 .

[42]  R. J. Robins,et al.  The Carnivorous Plants , 1989 .

[43]  H. Jacobs,et al.  Unambiguous structural and nuclear magnetic resonance spectral characterization of two triterpenoids of Maprounea guianensis by two-dimensional nuclear magnetic resonance spectroscopy , 1987 .

[44]  J. R. Cole,et al.  Antitumor agents from Jatropha macrorhiza (Euphorbiaceae) III: acetylaleuritolic acid. , 1977, Journal of pharmaceutical sciences.

[45]  M. Zenk,et al.  Occurrence and distribution of 7-methyljuglone and plumbagin in the droseraceae , 1969 .