Effectiveness of the cross-compliance standard 5.2 'buffer strips' on protecting freshwater against diffuse nitrogen pollution

Sette Fasce Tampone, realizzate secondo le indicazioni tecniche contenute nello Standard di condizionalita 5.2, in diversi ambiti e contesti climatici, sono state monitorate per un periodo biennale, al fine di quantificare la loro efficienza nella rimozione di azoto inorganico disciolto. Tale azoto e costituito per lo piu da molecole di azoto nitrico che vengono veicolate principalmente tramite deflussi sub-superficiali da zone soggette a diverse pratiche colturali verso i corpi idrici superficiali adiacenti. Ad eccezione di due casi: i siti di Lodi e Metaponto, in tutti i sistemi monitorati e stata confermata la presenza di deflussi trasversali ai sistemi tampone, permanenti o temporanei, in grado di veicolare inquinanti e con portate variabili fra 919 e 8.590 m 3 /anno per 100 m lineari di FT. Le differenze di portata sono imputabili principalmente alla diversa superficie dei bacini agricoli afferenti ai sistemi tampone, che nei casi analizzati occupano superfici variabili fra il 3,6 ed il 33,3% del bacino agricolo. Sulla base dei bilanci di massa e emerso che dai campi coltivati giungono ai sistemi tampone percentuali variabili fra l’1,6 ed il 29,4% dell’azoto inorganico applicato. Ad eccezione dei sistemi in cui i maggiori deflussi non hanno alcuna interazione con la rizosfera (deflussi profondi) oppure non attraversano la Fascia Tampone, in tutti gli altri siti si registra un effetto di riduzione dell’azoto fra entrata ed uscita, con percentuali variabili fra il 33 ed il 62 %. Percentuali di abbattimento non elevate sono giustificate dallo scarso grado di maturazione dei siti monitorati, in molti casi recentemente convertiti a Fascia Tampone. Ancora una volta si conferma l’estrema eterogeneita delle risposte di questi sistemi ed il ruolo prioritario delle forzanti idrologiche nel determinarne l’efficacia. Seven buffer strips (BS) adjacent to fresh water bodies, realized according to the technical data contained in the Standard 5.2 of Cross-compliance, located in different areas and climate contexts, were monitored for a period of two years. It was done in order to quantify their effectiveness in removing dissolved inorganic nitrogen conveyed through sub- surface flow from field crops with different cultural practices. Except for two case studies (sites: Lodi and Metaponto) in all monitored systems has been confirmed an outflow, permanent or temporary, through the buffer systems, with flow rates ranging from 919 to 8590 m 3 y -1 every 100 meters of buffer stip. The differences in flow rate were mainly due to different sizes of agricultural basins related to buffer systems, which in the case studies ranging from 3.6 to 33.3%. Based on the mass balance, was found percentages of applied inorganic nitrogen, flowing from cultivated fields to the buffer systems, varied between 1.6 and 29.4%. In most of the sites was estimated nitrogen reduction between inlet and outlet of BS, with percentages ranging from 33 to 61.9%. The exceptions were the systems with groundwater that: or have no interaction with the rhizosphere (deep flow) or not crossing the buffer zone. Low percentages of removal shall be justified by the young stage of the monitored sites, being in many cases recently converted to buffer strip. This study confirms the extreme variability of these systems efficiency and the key role of hydrology drives its effectiveness.

[1]  M. Mastrocicco,et al.  Modelling groundwater residence time in a sub‐irrigated buffer zone , 2014 .

[2]  Mathieu Sebilo,et al.  Long-term fate of nitrate fertilizer in agricultural soils , 2013, Proceedings of the National Academy of Sciences.

[3]  J. Mant,et al.  Linking the restoration of rivers and riparian zones/wetlands in Europe: Sharing knowledge through case studies , 2013 .

[4]  Kerong Zhang,et al.  Soil nitrogen and denitrification potential as affected by land use and stand age following agricultural abandonment in a headwater catchment , 2012 .

[5]  G. Destouni,et al.  Does Divergence of Nutrient Load Measurements Matter for Successful Mitigation of Marine Eutrophication? , 2012, AMBIO.

[6]  S. Casella,et al.  Shallow groundwater nitrogen and denitrification in a newly afforested, subirrigated riparian buffer , 2011 .

[7]  R. Bourbonniere,et al.  Spatial variability in surface N2O fluxes across a riparian zone and relationships with soil environmental conditions and nutrient supply , 2010 .

[8]  Jaana Uusi-Kämppä,et al.  Long-term monitoring of buffer zone efficiency under different cultivation techniques in boreal conditions , 2010 .

[9]  A. Ansari,et al.  Eutrophication: An ecological vision , 2005, The Botanical Review.

[10]  J. West,et al.  A screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water , 2005 .

[11]  V. Anbumozhi,et al.  Impact of riparian buffer zones on water quality and associated management considerations , 2005 .

[12]  G. Hofman,et al.  Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones , 2004, Biology and Fertility of Soils.

[13]  P. Vidon,et al.  Landscape controls on the hydrology of stream riparian zones , 2004 .

[14]  A. Butturini,et al.  Nitrogen Removal by Riparian Buffers along a European Climatic Gradient: Patterns and Factors of Variation , 2003, Ecosystems.

[15]  J. Cerhan,et al.  Municipal Drinking Water Nitrate Level and Cancer Risk in Older Women: The Iowa Women’s Health Study , 2001, Epidemiology.

[16]  A. Planty‐Tabacchi,et al.  Geomorphic control of denitrification in large river floodplain soils , 2000 .

[17]  J. K. Cronk,et al.  The Effectiveness and Restoration Potential of Riparian Ecotones for the Management of Nonpoint Source Pollution, Particularly Nitrate , 1997 .

[18]  G. Pinay,et al.  Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter , 1993 .

[19]  D. Correll,et al.  Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest , 1984 .