Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time

For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (Comm Math Phys 270(2):335–358, 2007). This improvement finally settles a conjecture by Aizenman (Nuclear Phys B 485(3):551–582, 1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (Ann Probab 36(4):1267–1286, 2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. Finally, we show that any weak limit of the largest connected component is non-degenerate, which can be viewed as a significant sign of critical behavior. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdős-Rényi random graphs.

[1]  Takashi Hara,et al.  Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. , 2005, math-ph/0504021.

[2]  Asaf Nachmias,et al.  The critical random graph, with martingales , 2005 .

[3]  Large Deviations of the Finite Cluster Shape for Two-Dimensional Percolation in the Hausdorff and L1 Metric , 2000 .

[4]  Tomasz Łuczak,et al.  Random trees and random graphs , 1998 .

[5]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[6]  Asaf Nachmias,et al.  Mean-Field Conditions for Percolation on Finite Graphs , 2007, 0709.1719.

[7]  Jennifer Chayes,et al.  The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation , 1990 .

[8]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[9]  Remco van der Hofstad,et al.  Random subgraphs of the 2D Hamming graph: the supercritical phase , 2008, 0801.1607.

[10]  Joel H. Spencer,et al.  Random Subgraphs Of Finite Graphs: III. The Phase Transition For The n-Cube , 2006, Comb..

[11]  Raphaël Cerf,et al.  Large deviations for three dimensional supercritical percolation , 2018, Astérisque.

[12]  Christian Borgs,et al.  The Birth of the Infinite Cluster:¶Finite-Size Scaling in Percolation , 2001 .

[13]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[14]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[15]  H. Poincaré,et al.  Percolation ? , 1982 .

[16]  Jean Picard,et al.  The Lace Expansion and its Applications , 2006 .

[17]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[18]  Michael Aizenman,et al.  Percolation Critical Exponents Under the Triangle Condition , 1991 .

[19]  Joel H. Spencer,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2005, Random Struct. Algorithms.

[20]  Tomasz Luczak Random trees and random graphs , 1998, Random Struct. Algorithms.

[21]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[22]  Mean-field critical behaviour for correlation length for percolation in high dimensions , 1990 .

[23]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[24]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[25]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[26]  Nicholas C. Wormald,et al.  The Diameter of Sparse Random Graphs , 2010, Comb. Probab. Comput..

[27]  Remco van der Hofstad,et al.  Maximal Clusters in Non-Critical Percolation and Related Models , 2004, math/0402169.

[28]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.

[29]  Remco van der Hofstad,et al.  A local limit theorem for the critical random graph , 2008 .

[30]  Remco van der Hofstad,et al.  Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models , 2000, math-ph/0011046.

[31]  Remco van der Hofstad,et al.  Random Graph Asymptotics on High-Dimensional Tori , 2005 .

[32]  Raphaël Cerf,et al.  The Wulff Crystal in Ising and Percolation Models , 2006 .

[33]  Gordon Slade,et al.  The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion , 2000 .

[34]  J. Spencer,et al.  The second largest component in the supercritical 2D Hamming graph , 2010 .

[35]  Yuval Peres,et al.  Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.

[36]  Joel H. Spencer,et al.  The second largest component in the supercritical 2D Hamming graph , 2010, Random Struct. Algorithms.

[37]  Remco van der Hofstad,et al.  Random subgraphs of finite graphs : II. The lace expansion and the triangle condition , 2003 .

[38]  Michael Aizenman,et al.  On the Number of Incipient Spanning Clusters , 1997 .

[39]  Gordon Slade,et al.  The Scaling Limit of the Incipient Infinite Cluster in High-Dimensional Percolation. I. Critical Exponents , 1999 .

[40]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.