Photonic implementation of boson sampling: a review

Abstract. Boson sampling is a computational problem that has recently been proposed as a candidate to obtain an unequivocal quantum computational advantage. The problem consists in sampling from the output distribution of indistinguishable bosons in a linear interferometer. There is strong evidence that such an experiment is hard to classically simulate, but it is naturally solved by dedicated photonic quantum hardware, comprising single photons, linear evolution, and photodetection. This prospect has stimulated much effort resulting in the experimental implementation of progressively larger devices. We review recent advances in photonic boson sampling, describing both the technological improvements achieved and the future challenges. We also discuss recent proposals and implementations of variants of the original problem, theoretical issues occurring when imperfections are considered, and advances in the development of suitable techniques for validation of boson sampling experiments. We conclude by discussing the future application of photonic boson sampling devices beyond the original theoretical scope.

[1]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[2]  Yu He,et al.  Time-Bin-Encoded Boson Sampling with a Single-Photon Device. , 2016, Physical review letters.

[3]  Juan Miguel Arrazola,et al.  Quantum approximate optimization with Gaussian boson sampling , 2018, Physical Review A.

[4]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[5]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[6]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[7]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[8]  Greg Kuperberg,et al.  The bosonic birthday paradox , 2011, 1106.0849.

[9]  Fabio Sciarrino,et al.  Optimal photonic indistinguishability tests in multimode networks. , 2017, Science bulletin.

[10]  Daniel J. Brod,et al.  Classical simulation of photonic linear optics with lost particles , 2018, New Journal of Physics.

[11]  Jelmer J. Renema,et al.  Simulating boson sampling in lossy architectures , 2017, Quantum.

[12]  Juan Miguel Arrazola,et al.  Gaussian boson sampling using threshold detectors , 2018, Physical Review A.

[13]  Yong-Jian Gu,et al.  A certification scheme for the boson sampler , 2016 .

[14]  Nicolas J. Cerf,et al.  Boson sampling with Gaussian measurements , 2017, 1705.05299.

[15]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[16]  Daniel J. Brod,et al.  Complexity of simulating constant-depth BosonSampling , 2014, 1412.6788.

[17]  Fabio Sciarrino,et al.  Experimental generalized quantum suppression law in Sylvester interferometers , 2017, 1705.08650.

[18]  Anthony Leverrier,et al.  Analysis of circuit imperfections in BosonSampling , 2013, Quantum Inf. Comput..

[19]  V. Shchesnovich,et al.  Partial indistinguishability theory for multiphoton experiments in multiport devices , 2014, 1410.1506.

[20]  Nathan Wiebe,et al.  Experimental statistical signature of many-body quantum interference , 2018 .

[21]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[22]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[23]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[24]  Lidror Troyansky,et al.  Permanent Uncertainty: on the Quantum Evaluation of the Determinant and the Permanent of a Matrix , 1996 .

[25]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[26]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[27]  Tao Wang,et al.  Nuclear magnetic resonance for quantum computing: Techniques and recent achievements , 2018 .

[28]  M. Yung,et al.  Vibronic Boson Sampling: Generalized Gaussian Boson Sampling for Molecular Vibronic Spectra at Finite Temperature , 2016, Scientific Reports.

[29]  A. P. Lund,et al.  Exact boson sampling using Gaussian continuous-variable measurements , 2017, 1705.06041.

[30]  Andreas Buchleitner,et al.  Statistical benchmark for BosonSampling , 2014, 1410.8547.

[31]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[32]  Baida Zhang,et al.  A Benchmark Test of Boson Sampling on Tianhe-2 Supercomputer , 2018 .

[33]  Michel Rigo,et al.  Abstract numeration systems and tilings , 2005 .

[34]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[35]  S. Scheel,et al.  Permanents in linear optical networks , 2004, quant-ph/0406127.

[36]  Grammati Pantziou,et al.  Algorithms, Probability, Networks, and Games , 2015, Lecture Notes in Computer Science.

[37]  Gregor Weihs,et al.  Totally destructive interference for permutation-symmetric many-particle states , 2018, Physical Review A.

[38]  L. Duan,et al.  Efficient classical simulation of noisy quantum computation , 2018, 1810.03176.

[39]  V S Shchesnovich,et al.  Universality of Generalized Bunching and Efficient Assessment of Boson Sampling. , 2015, Physical review letters.

[40]  Carlton M. Caves,et al.  Sufficient Conditions for Efficient Classical Simulation of Quantum Optics , 2015, 1511.06526.

[41]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[42]  Nicolò Spagnolo,et al.  Is my boson sampler working , 2016 .

[43]  Simone Atzeni,et al.  Integrated sources of entangled photons at telecom wavelength in femtosecond-laser-written circuits , 2017, 1710.09618.

[44]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[45]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[46]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[47]  Andrea Crespi,et al.  Suppression laws for multiparticle interference in Sylvester interferometers , 2015, 1502.06372.

[48]  Peter P Rohde,et al.  Scalable boson sampling with time-bin encoding using a loop-based architecture. , 2014, Physical review letters.

[49]  Markus Tiersch,et al.  Zero-transmission law for multiport beam splitters. , 2010, Physical review letters.

[50]  Fabio Sciarrino,et al.  Witnessing Genuine Multiphoton Indistinguishability. , 2018, Physical review letters.

[51]  C. Sabín,et al.  Dynamical Casimir Effect for Gaussian Boson Sampling , 2016, Scientific Reports.

[52]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[53]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[54]  James C. Gates,et al.  Chip-based array of near-identical, pure, heralded single-photon sources , 2016, 1603.06984.

[55]  Kaushik P. Seshadreesan,et al.  Boson sampling with displaced single-photon Fock states versus single-photon-added coherent states: The quantum-classical divide and computational-complexity transitions in linear optics , 2014, 1402.0531.

[56]  Nicolò Spagnolo,et al.  Benchmarking integrated linear-optical architectures for quantum information processing , 2017, Scientific Reports.

[57]  Juan Miguel Arrazola,et al.  Using Gaussian Boson Sampling to Find Dense Subgraphs. , 2018, Physical review letters.

[58]  Valery Shchesnovich,et al.  Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer , 2013, 1311.6796.

[59]  Vincenzo Tamma,et al.  Toward quantum computational supremacy of boson sampling with random overlap in the photonic spectra , 2018 .

[60]  Juan Miguel Arrazola,et al.  Classical benchmarking of Gaussian Boson Sampling on the Titan supercomputer , 2018, Quantum Inf. Process..

[61]  Pavlos S. Efraimidis,et al.  Weighted Random Sampling over Data Streams , 2010, Algorithms, Probability, Networks, and Games.

[62]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[63]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[64]  P. Kwiat,et al.  High-efficiency single-photon generation via large-scale active time multiplexing , 2018, Science Advances.

[65]  Guy Kindler,et al.  Gaussian Noise Sensitivity and BosonSampling , 2014, ArXiv.

[66]  Xiao Jiang,et al.  Toward Scalable Boson Sampling with Photon Loss. , 2018, Physical review letters.

[67]  Gregor Weihs,et al.  Totally Destructive Many-Particle Interference. , 2018, Physical review letters.

[68]  Alex Arkhipov,et al.  BosonSampling is robust against small errors in the network matrix , 2014, 1412.2516.

[69]  F. Brandão,et al.  Local random quantum circuits are approximate polynomial-designs: numerical results , 2012, 1208.0692.

[70]  Christian Weedbrook,et al.  Gaussian boson sampling for perfect matchings of arbitrary graphs , 2017, Physical Review A.

[71]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[72]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[73]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[74]  Vincenzo Tamma,et al.  Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States. , 2014, Physical review letters.

[75]  Igor Jex,et al.  Detailed study of Gaussian boson sampling , 2018, Physical Review A.

[76]  Tobias Schaetz,et al.  Trapping ions and atoms optically , 2017, 2105.01155.

[77]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[78]  Andreas Björklund,et al.  Counting perfect matchings as fast as Ryser , 2011, SODA.

[79]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[80]  S. Nolte,et al.  Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .

[81]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[82]  J. Renema,et al.  Classical simulability of noisy boson sampling , 2018, 1809.01953.

[83]  Peter Michler,et al.  Quantum Dots for Quantum Information Technologies , 2017 .

[84]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[85]  Christian P. Robert,et al.  Bayesian computation: a summary of the current state, and samples backwards and forwards , 2015, Statistics and Computing.

[86]  Jens Eisert,et al.  Boson-Sampling in the light of sample complexity , 2013, ArXiv.

[87]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[88]  Sheng-Tao Wang,et al.  Certification of Boson Sampling Devices with Coarse-Grained Measurements , 2016, 1601.02627.

[89]  C. Hamilton,et al.  Driven Boson Sampling. , 2016, Physical review letters.

[90]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[91]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[92]  Vincenzo Tamma,et al.  From the Physics to the Computational Complexity of Multiboson Correlation Interference. , 2015, Physical review letters.

[93]  Vincenzo Tamma,et al.  Experimental Time-Resolved Interference with Multiple Photons of Different Colors. , 2018, Physical review letters.

[94]  Nathan Wiebe,et al.  Pattern recognition techniques for Boson Sampling validation , 2017, Physical Review X.

[95]  Gregor Weihs,et al.  Many-body quantum interference on hypercubes , 2016, 1607.00836.

[96]  Peter P. Rohde,et al.  Boson sampling with photons of arbitrary spectral structure , 2014, 1410.3979.

[97]  V. Quiring,et al.  A two-channel, spectrally degenerate polarization entangled source on chip , 2016, 1604.03430.

[98]  Leonid Gurvits,et al.  On the Complexity of Mixed Discriminants and Related Problems , 2005, MFCS.

[99]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[100]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[101]  Anthony Laing,et al.  Direct dialling of Haar random unitary matrices , 2015, 1506.06220.

[102]  Nicolò Spagnolo,et al.  Bayesian approach to Boson sampling validation , 2014 .

[103]  Vincenzo Tamma,et al.  Symmetries and entanglement features of inner-mode-resolved correlations of interfering nonidentical photons , 2017, Physical Review A.

[104]  J. Eisert,et al.  Reliable quantum certification of photonic state preparations , 2014, Nature Communications.

[105]  Kaushik P. Seshadreesan,et al.  Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling , 2014, 1406.7821.

[106]  Anthony Laing,et al.  Generation and sampling of quantum states of light in a silicon chip , 2018, Nature Physics.

[107]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[108]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[109]  Scott Aaronson,et al.  BosonSampling with Lost Photons , 2015, ArXiv.

[110]  S. Scheel,et al.  MACROSCOPIC QUANTUM ELECTRODYNAMICS — CONCEPTS AND APPLICATIONS , 2008, 0902.3586.

[111]  W. Clements,et al.  Efficient Classical Algorithm for Boson Sampling with Partially Distinguishable Photons. , 2017, Physical review letters.