A SCALABLE HELMHOLTZ SOLVER COMBINING THE SHIFTED LAPLACE PRECONDITIONER WITH MULTIGRID DEFLATION
暂无分享,去创建一个
[1] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[2] Cornelis Vuik,et al. A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..
[3] Cornelis Vuik,et al. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .
[4] Cornelis Vuik,et al. Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..
[5] Sanna Mönkölä,et al. Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics , 2010, J. Comput. Appl. Math..
[6] Michael B. Giles,et al. Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .
[7] Reinhard Nabben,et al. Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..
[8] Jianping Zhu,et al. An incomplete factorization preconditioner based on shifted Laplace operators for FEM analysis of microwave structures , 2010 .
[9] Y. Erlangga,et al. ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .
[10] Cornelis Vuik,et al. A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..
[11] Cornelis W. Oosterlee,et al. A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization , 2009, Numer. Linear Algebra Appl..
[12] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[13] René-Édouard Plessix,et al. A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .
[14] Jari Toivanen,et al. A damping preconditioner for time-harmonic wave equations in fluid and elastic material , 2009, J. Comput. Phys..
[15] Reinhard Nabben,et al. Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[16] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[17] Wim Vanroose,et al. On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..
[18] Wim Vanroose,et al. An Analysis of Equivalent Operator Preconditioning for Equation-Free Newton-Krylov Methods , 2010, SIAM J. Numer. Anal..
[19] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[20] Yogi A. Erlangga,et al. Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .
[21] René-Édouard Plessix,et al. Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .
[22] Erkki Heikkola,et al. An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..
[23] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[24] R. Plessix. Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .
[25] Karl Meerbergen,et al. Connection and comparison between frequency shift time integration and a spectral transformation preconditioner , 2009, Numer. Linear Algebra Appl..
[26] Y. Saad,et al. Preconditioning Helmholtz linear systems , 2010 .
[27] J. M. Tang. Two-level preconditioned conjugate gradient methods with applications to bubbly flow problems , 2008 .
[28] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[29] Mardochée Magolu monga Made,et al. Incomplete factorization-based preconditionings for solving the Helmholtz equation , 2001 .