A SCALABLE HELMHOLTZ SOLVER COMBINING THE SHIFTED LAPLACE PRECONDITIONER WITH MULTIGRID DEFLATION

A Helmholtz solver whose convergence is parameter independent can be obtained by combining the shifted Laplace preconditioner with multigrid deflation. To proof this claim, we develop a Fourier analysis of a two-level variant of the algorithm proposed in [1]. In this algorithm those eigenvalues that prevent the shifted Laplace preconditioner from being scalable are removed by deflation using multigrid vectors. Our analysis shows that the spectrum of the two-grid operator consists of a cluster surrounded by a few outliers, yielding a number of outer Krylov subspace iterations that remains constant as the wave number increases. Our analysis furthermore shows that the imaginary part of the shift in the two-grid operator can be made arbitrarily large without affecting the convergence. This opens promising perspectives on obtaining a very good preconditioner at very low cost. Numerical tests for problems with constant and non-constant wave number illustrate our convergence theory.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  Cornelis Vuik,et al.  A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..

[3]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[4]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[5]  Sanna Mönkölä,et al.  Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics , 2010, J. Comput. Appl. Math..

[6]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[7]  Reinhard Nabben,et al.  Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..

[8]  Jianping Zhu,et al.  An incomplete factorization preconditioner based on shifted Laplace operators for FEM analysis of microwave structures , 2010 .

[9]  Y. Erlangga,et al.  ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .

[10]  Cornelis Vuik,et al.  A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..

[11]  Cornelis W. Oosterlee,et al.  A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization , 2009, Numer. Linear Algebra Appl..

[12]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[13]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[14]  Jari Toivanen,et al.  A damping preconditioner for time-harmonic wave equations in fluid and elastic material , 2009, J. Comput. Phys..

[15]  Reinhard Nabben,et al.  Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[16]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[17]  Wim Vanroose,et al.  On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..

[18]  Wim Vanroose,et al.  An Analysis of Equivalent Operator Preconditioning for Equation-Free Newton-Krylov Methods , 2010, SIAM J. Numer. Anal..

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[21]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[22]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..

[23]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[24]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[25]  Karl Meerbergen,et al.  Connection and comparison between frequency shift time integration and a spectral transformation preconditioner , 2009, Numer. Linear Algebra Appl..

[26]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[27]  J. M. Tang Two-level preconditioned conjugate gradient methods with applications to bubbly flow problems , 2008 .

[28]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[29]  Mardochée Magolu monga Made,et al.  Incomplete factorization-based preconditionings for solving the Helmholtz equation , 2001 .